Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Aaron Muth is active.

Publication


Featured researches published by Aaron Muth.


eLife | 2017

Diverse stimuli engage different neutrophil extracellular trap pathways

Elaine F. Kenny; Alf Herzig; Renate Krüger; Aaron Muth; Santanu Mondal; Paul R. Thompson; Volker Brinkmann; Horst von Bernuth; Arturo Zychlinsky

Neutrophils release neutrophil extracellular traps (NETs) which ensnare pathogens and have pathogenic functions in diverse diseases. We examined the NETosis pathways induced by five stimuli; PMA, the calcium ionophore A23187, nigericin, Candida albicans and Group B Streptococcus. We studied NET production in neutrophils from healthy donors with inhibitors of molecules crucial to PMA-induced NETs including protein kinase C, calcium, reactive oxygen species, the enzymes myeloperoxidase (MPO) and neutrophil elastase. Additionally, neutrophils from chronic granulomatous disease patients, carrying mutations in the NADPH oxidase complex or a MPO-deficient patient were examined. We show that PMA, C. albicans and GBS use a related pathway for NET induction, whereas ionophores require an alternative pathway but that NETs produced by all stimuli are proteolytically active, kill bacteria and composed mainly of chromosomal DNA. Thus, we demonstrate that NETosis occurs through several signalling mechanisms, suggesting that extrusion of NETs is important in host defence. DOI: http://dx.doi.org/10.7554/eLife.24437.001


Science Advances | 2016

Citrullination-acetylation interplay guides E2F-1 activity during the inflammatory response

Fatemeh Ghari; Anne-Marie Quirke; Shonagh Munro; Joanna Z. Kawalkowska; Sarah Picaud; Joanna F. McGouran; Venkataraman Subramanian; Aaron Muth; Richard O. Williams; Benedikt M. Kessler; Paul R. Thompson; Panagis Fillipakopoulos; Stefan Knapp; Patrick J. Venables; Nicholas B. La Thangue

PAD4-mediated citrullination of E2F-1 transcription factor and its interplay with acetylation affects inflammatory gene expression. Peptidyl arginine deiminase 4 (PAD4) is a nuclear enzyme that converts arginine residues to citrulline. Although increasingly implicated in inflammatory disease and cancer, the mechanism of action of PAD4 and its functionally relevant pathways remains unclear. E2F transcription factors are a family of master regulators that coordinate gene expression during cellular proliferation and diverse cell fates. We show that E2F-1 is citrullinated by PAD4 in inflammatory cells. Citrullination of E2F-1 assists its chromatin association, specifically to cytokine genes in granulocyte cells. Mechanistically, citrullination augments binding of the BET (bromodomain and extra-terminal domain) family bromodomain reader BRD4 (bromodomain-containing protein 4) to an acetylated domain in E2F-1, and PAD4 and BRD4 coexist with E2F-1 on cytokine gene promoters. Accordingly, the combined inhibition of PAD4 and BRD4 disrupts the chromatin-bound complex and suppresses cytokine gene expression. In the murine collagen-induced arthritis model, chromatin-bound E2F-1 in inflammatory cells and consequent cytokine expression are diminished upon small-molecule inhibition of PAD4 and BRD4, and the combined treatment is clinically efficacious in preventing disease progression. Our results shed light on a new transcription-based mechanism that mediates the inflammatory effect of PAD4 and establish the interplay between citrullination and acetylation in the control of E2F-1 as a regulatory interface for driving inflammatory gene expression.


Journal of Medicinal Chemistry | 2016

Development of Glucose Regulated Protein 94-Selective Inhibitors Based on the BnIm and Radamide Scaffold.

Vincent M. Crowley; Anuj Khandelwal; Sanket Mishra; Andrew R. Stothert; Dustin J. E. Huard; Jinbo Zhao; Aaron Muth; Adam S. Duerfeldt; James L. Kizziah; Raquel L. Lieberman; Chad A. Dickey; Brian S. J. Blagg

Glucose regulated protein 94 (Grp94) is the endoplasmic reticulum resident of the heat shock protein 90 kDa (Hsp90) family of molecular chaperones. Grp94 associates with many proteins involved in cell adhesion and signaling, including integrins, Toll-like receptors, immunoglobulins, and mutant myocilin. Grp94 has been implicated as a target for several therapeutic areas including glaucoma, cancer metastasis, and multiple myeloma. While 85% identical to other Hsp90 isoforms, the N-terminal ATP-binding site of Grp94 possesses a unique hydrophobic pocket that was used to design isoform-selective inhibitors. Incorporation of a cis-amide bioisostere into the radamide scaffold led to development of the original Grp94-selective inhibitor, BnIm. Structure-activity relationship studies have now been performed on the aryl side chain of BnIm, which resulted in improved analogues that exhibit better potency and selectivity for Grp94. These analogues also manifest superior antimigratory activity in a metastasis model as well as enhanced mutant myocilin degradation in a glaucoma model compared to BnIm.


Journal of Biological Chemistry | 2013

Putrescine Importer PlaP Contributes to Swarming Motility and Urothelial Cell Invasion in Proteus mirabilis

Shin Kurihara; Yumi Sakai; Hideyuki Suzuki; Aaron Muth; Otto Phanstiel; Philip N. Rather

Background: Polyamines play roles in bacterial cell-to-cell signaling processes. Results: In Proteus mirabilis, PlaP is important for putrescine uptake, swarming motility, and urothelial cell invasion, and the putrescine transport inhibitor Triamide-44 inhibits these processes. Conclusion: PlaP is the primary putrescine transporter in P. mirabilis. Significance: This research suggests that novel drug cocktails that target both microbial putrescine uptake and biosynthesis can be developed. Previously, we reported that the speA gene, encoding arginine decarboxylase, is required for swarming in the urinary tract pathogen Proteus mirabilis. In addition, this previous study suggested that putrescine may act as a cell-to-cell signaling molecule (Sturgill, G., and Rather, P. N. (2004) Mol. Microbiol. 51, 437–446). In this new study, PlaP, a putative putrescine importer, was characterized in P. mirabilis. In a wild-type background, a plaP null mutation resulted in a modest swarming defect and slightly decreased levels of intracellular putrescine. In a P. mirabilis speA mutant with greatly reduced levels of intracellular putrescine, plaP was required for the putrescine-dependent rescue of swarming motility. When a speA/plaP double mutant was grown in the presence of extracellular putrescine, the intracellular levels of putrescine were greatly reduced compared with the speA mutant alone, indicating that PlaP functioned as the primary putrescine importer. In urothelial cell invasion assays, a speA mutant exhibited a 50% reduction in invasion when compared with wild type, and this defect could be restored by putrescine in a PlaP-dependent manner. The putrescine analog Triamide-44 partially inhibited the uptake of putrescine by PlaP and decreased both putrescine stimulated swarming and urothelial cell invasion in a speA mutant.


Bioorganic & Medicinal Chemistry | 2014

Development of radamide analogs as Grp94 inhibitors

Aaron Muth; Vincent M. Crowley; Anuj Khandelwal; Sanket Mishra; Jinbo Zhao; Jessica A. Hall; Brian S. J. Blagg

Hsp90 isoform-selective inhibition is highly desired as it can potentially avoid the toxic side-effects of pan-inhibition. The current study developed selective inhibitors of one such isoform, Grp94, predicated on the chimeric and pan-Hsp90 inhibitor, radamide (RDA). Replacement of the quinone moiety of RDA with a phenyl ring (2) was found to be better suited for Grp94 inhibition as it can fully interact with a unique hydrophobic pocket present in Grp94. An extensive SAR for this scaffold showed that substitutions at the 2- and 4-positions (8 and 27, respectively) manifested excellent Grp94 affinity and selectivity. Introduction of heteroatoms into the ring also proved beneficial, with a 2-pyridine derivative (38) exhibiting the highest Grp94 affinity (K(d)=820 nM). Subsequent cell-based assays showed that these Grp94 inhibitors inhibit migration of the metastatic breast cancer cell line, MDA-MB-231, as well as exhibit an anti-proliferative affect against the multiple myeloma cell line, RPMI 8226.


Science immunology | 2017

Citrullination of NF-κB p65 promotes its nuclear localization and TLR-induced expression of IL-1β and TNFα

Bo Sun; Nishant Dwivedi; Tyler J. Bechtel; Janet L. Paulsen; Aaron Muth; Mandar Bawadekar; Gang Li; Paul R. Thompson; Miriam A. Shelef; Celia A. Schiffer; Eranthie Weerapana; I-Cheng Ho

Heightened citrullination promotes the expression of inflammatory cytokines in rheumatoid arthritis. PADs inflame arthritis Individuals with rheumatoid arthritis (RA) produce an autoimmune response to citrullinated proteins that may contribute to disease pathology. Sun et al. report that citrullination also directly contributes to RA-associated inflammation. They found that decreased activity of peptidylarginine deiminases (PADs), which catalyze peptide citrullination, limited TLR-induced expression of the proinflammatory cytokines IL-1β and TNFα by neutrophils. PAD4 directly citrullinated the proinflammatory signaling molecule NF-κB p65, enhancing transport into the nucleus. An RA-associated human variant of PAD4 interacted more closely with NF-κB p65, thereby augmenting NF-κB activity. These data suggest that the interaction between PADs and NF-κB p65 may serve as a more specific target to treat RA. Many citrullinated proteins are known autoantigens in rheumatoid arthritis, a disease mediated by inflammatory cytokines, such as tumor necrosis factor–α (TNFα). Citrullinated proteins are generated by converting peptidylarginine to peptidylcitrulline, a process catalyzed by the peptidylarginine deiminases (PADs), including PAD1 to PAD4 and PAD6. Several major risk factors for rheumatoid arthritis are associated with heightened citrullination. However, the physiological role of citrullination in immune cells is poorly understood. We report that suppression of PAD activity attenuates Toll-like receptor–induced expression of interleukin-1β (IL-1β) and TNFα by neutrophils in vivo and in vitro but not their global transcription activity. Mechanistically, PAD4 directly citrullinates nuclear factor κB (NF-κB) p65 and enhances the interaction of p65 with importin α3, which brings p65 into the nucleus. The citrullination-enhanced interaction of p65 with importin α3 and its nuclear translocation and transcriptional activity can be attributed to citrullination of four arginine residues located in the Rel homology domain of p65. Furthermore, a rheumatoid arthritis–prone variant of PAD4, carrying three missense mutations, is more efficient in interacting with p65 and enhancing NF-κB activity. Together, these data not only demonstrate a critical role of citrullination in an NF-κB–dependent expression of IL-1β and TNFα but also provide a molecular mechanism by which heightened citrullination propagates inflammation in rheumatoid arthritis. Accordingly, attenuating p65-mediated production of IL-1β and TNFα by blocking the citrullination of p65 has great therapeutic potential in rheumatoid arthritis.


Journal of Medicinal Chemistry | 2014

Synthesis and biological evaluation of antimetastatic agents predicated upon dihydromotuporamine C and its carbocyclic derivatives.

Aaron Muth; Veethika Pandey; Navneet Kaur; Melissa S. Wason; Cheryl H. Baker; Xianlin Han; Teresa R. Johnson; Deborah A. Altomare; Otto Phanstiel

The motuporamines isolated from the sea sponge Xestospongia exigua are of biological interest because of their unique antimigration and antiangiogenic properties. Key bioactive features were found to be a saturated 15-membered heterocycle and a norspermidine motif. This paper describes new analogues that modulate the cytotoxicity of this compound class and have enhanced antimigration properties. By movement of the polyamine chain outside the ring, new carbocycles were discovered that doubled the antimigration potency and reduced compound toxicity by 133-fold. Mice injected with metastatic human L3.6pl pancreatic cancer cells demonstrated significant reduction in liver metastases when treated with N(1)-(3-aminopropyl)-N(3)-(cyclopentadecylmethyl)propane-1,3-diamine compared with dihydromotuporamine C. Significant changes in specific ceramide populations (N16:0 and N22:1) were noted in L3.6pl cells treated with dihydromotuporamine C but not for the cyclopentadecylmethylnorspermidine derivative, which had lower toxicity. Both compounds gave increased levels of specific low molecular weight sphingomyelins, suggesting that they may act upon sphingomyelin processing enzymes.


Journal of Medicinal Chemistry | 2017

Development of a Selective Inhibitor of Protein Arginine Deiminase 2.

Aaron Muth; Venkataraman Subramanian; Edward Beaumont; Mitesh Nagar; Philip S. Kerry; Paul A. McEwan; Hema Srinath; Kathleen W. Clancy; Sangram Parelkar; Paul R. Thompson

Protein arginine deiminase 2 (PAD2) plays a key role in the onset and progression of multiple sclerosis, rheumatoid arthritis, and breast cancer. To date, no PAD2-selective inhibitor has been developed. Such a compound will be critical for elucidating the biological roles of this isozyme and may ultimately be useful for treating specific diseases in which PAD2 activity is dysregulated. To achieve this goal, we synthesized a series of benzimidazole-based derivatives of Cl-amidine, hypothesizing that this scaffold would allow access to a series of PAD2-selective inhibitors with enhanced cellular efficacy. Herein, we demonstrate that substitutions at both the N-terminus and C-terminus of Cl-amidine result in >100-fold increases in PAD2 potency and selectivity (30a, 41a, and 49a) as well as cellular efficacy (30a). Notably, these compounds use the far less reactive fluoroacetamidine warhead. In total, we predict that 30a will be a critical tool for understanding cellular PAD2 function and sets the stage for treating diseases in which PAD2 activity is dysregulated.


Journal of Organic Chemistry | 2012

Chemoselective Amide Formation Using O-(4-Nitrophenyl)hydroxylamines and Pyruvic Acid Derivatives

Sonali Kumar; Rashi Sharma; Megan Garcia; Joseph Kamel; Caroline McCarthy; Aaron Muth; Otto Phanstiel

A series of O-(4-nitrophenyl)hydroxylamines were synthesized from their respective oximes using a pulsed addition of excess NaBH(3)CN at pH 3 in 65-75% yield. Steric hindrance near the oxime functional group played a key role in both the ease by which the oxime could be reduced and the subsequent reactivity of the respective hydroxylamine. Reaction of the respective hydroxylamines with pyruvic acid derivatives generated the desired amides in good yields. A comparison of phenethylamine systems bearing different leaving groups revealed significant differences in the rates of these systems and suggested that the leaving group ability of the N-OR substituent plays an important role in determining their reactivity with pyruvic acid. Competition experiments (in 68% DMSO/phosphate buffered saline) using 1 equiv of N-phenethyl-O-(4-nitrophenyl)hydroxylamine and 2 equiv of pyruvic acid in the presence of other nucleophiles such as glycine, cysteine, phenol, hexanoic acid, and lysine demonstrated that significant chemoselectivity is present in this reaction. The results suggest that this chemoselective reaction can occur in the presence of excess α-amino acids, phenols, acids, thiols, and amines.


PLOS ONE | 2016

Peptidylarginine Deiminase 3 (PAD3) Is Upregulated by Prolactin Stimulation of CID-9 Cells and Expressed in the Lactating Mouse Mammary Gland

Guangyuan Li; Isaac N. Hayward; Brittany R. Jenkins; Heather M. Rothfuss; Coleman H. Young; Marja T. Nevalainen; Aaron Muth; Paul R. Thompson; Amy M. Navratil; Brian D. Cherrington

Peptidylarginine deiminases (PADs) post-translationally convert arginine into neutral citrulline residues. Our past work shows that PADs are expressed in the canine and murine mammary glands; however, the mechanisms regulating PAD expression and the function of citrullination in the normal mammary gland are unclear. Therefore, the first objective herein was to investigate regulation of PAD expression in mammary epithelial cells. We first examined PAD levels in CID-9 cells, which were derived from the mammary gland of mid-pregnant mice. PAD3 expression is significantly higher than all other PAD isoforms and mediates protein citrullination in CID-9 cells. We next hypothesized that prolactin regulates PAD3 expression. To test this, CID-9 cells were stimulated with 5 μg/mL of prolactin for 48 hours which significantly increases PAD3 mRNA and protein expression. Use of a JAK2 inhibitor and a dominant negative (DN)-STAT5 adenovirus indicate that prolactin stimulation of PAD3 expression is mediated by the JAK2/STAT5 signaling pathway in CID-9 cells. In addition, the human PAD3 gene promoter is prolactin responsive in CID-9 cells. Our second objective was to investigate the expression and activity of PAD3 in the lactating mouse mammary gland. PAD3 expression in the mammary gland is highest on lactation day 9 and coincident with citrullinated proteins such as histones. Use of the PAD3 specific inhibitor, Cl4-amidine, indicates that PAD3, in part, can citrullinate proteins in L9 mammary glands. Collectively, our results show that upregulation of PAD3 is mediated by prolactin induction of the JAK2/STAT5 signaling pathway, and that PAD3 appears to citrullinate proteins during lactation.

Collaboration


Dive into the Aaron Muth's collaboration.

Top Co-Authors

Avatar

Paul R. Thompson

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar

Otto Phanstiel

University of Central Florida

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Deborah A. Altomare

University of Central Florida

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge