Aaron R. Burke
Wright-Patterson Air Force Base
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Aaron R. Burke.
Journal of Physical Chemistry A | 2011
Aleksander Rebane; Mikhail Drobizhev; Nikolay S. Makarov; Erich Beuerman; Joy E. Haley; M. Krein Douglas; Aaron R. Burke; Jonathan L. Flikkema; Thomas M. Cooper
We investigate two-photon absorption (2PA) in a series of fluorenyl-based 9,9-diethyl-2-ethynyl-7-((4-R-phenyl)ethynyl)-9,9a-dihydro-4aH-fluorene chromophores with R being various electron donating (ED) and electron withdrawing (EW) groups. We use wavelength-tunable femtosecond laser pulses to measure the 2PA cross sections in the lowest dipole-allowed transition and show that the substituents with stronger ED or EW character enhance the peak 2PA cross section (up to σ(2) ∼ 60-80 GM) while the neutral substituents lead to smaller cross sections, σ(2) < 10 GM. We apply two-level approximation to establish a quantitative relation between the 2PA in the pure electronic transition (0-0) and the corresponding change of the permanent electric dipole moment upon the excitation (Δμ). This relation is elucidated by comparing Δμ values obtained from the 2PA measurements with quantum-chemical calculations and with measurements of solvatochromic shifts in a series of solvents. We show that the calculated Δμ correlate well with the values obtained from the 2PA spectroscopy. The Δμ values obtained from the solvatochromic shifts agree well with the above two methods for the chromophores with neutral or weak EW or ED substituents. On the other hand, stronger EW or ED end groups give much larger Stokes shifts, which lead to an overestimation of the Δμ values. We tentatively attribute this effect to the excitation-induced electronic density change occurring predominantly at the substituent side of the molecule, which causes the effective point dipole associated with the Δμ to interact more strongly with the surrounding solvent.
Journal of Physical Chemistry A | 2011
Joy E. Haley; Douglas M. Krein; Jennifer Monahan; Aaron R. Burke; Daniel G. McLean; Jonathan E. Slagle; Albert Fratini; Thomas M. Cooper
To explore spectroscopic structure-property relationships in platinum acetylides, we synthesized a series of complexes having the molecular formula trans-bis(tributylphosphine)-bis(4-((9,9-diethyl-7-ethynyl-9H-fluoren-2-yl)ethynyl)-R)-platinum. The substituent, R = NH(2), OCH(3), N(phenyl)(2), t-butyl, CH(3), H, F, benzothiazole, CF(3), CN, and NO(2), was chosen for a systematic variation in electron-donating and -withdrawing properties as described by the Hammett parameter σ(p). UV/vis, fluorescence, and phosphorescence spectra, transient absorption spectra on the fs-ps time scale, and longer time scale flash photolysis on the ns time scale were collected. DFT and TDDFT calculations of the T(1) and S(1) energies were performed. The E(S) and E(T) values measured from linear spectra correlate well with the calculated results, giving evidence for the delocalized MLCT character of the S(1) state and confinement of the T(1) exciton on one ligand. The calculated T(1) state dipole moment ranges from 0.5 to 14 D, showing the polar, charge-transfer character of the T(1) state. The ultrafast absorption spectra have broad absorption bands from 575 to 675 nm and long wavelength contribution, which is shown from flash photolysis measurements to be from the T(1) state. The T(1) energy obtained from phosphorescence, the T(1)-T(n) transition energy obtained from flash photolysis measurements, and the triplet-state radiative rate constant are functions of the calculated spin density distribution on the ligand. The calculations show that the triplet exciton of chromophores with electron-withdrawing substituents is localized away from the central platinum atom, red-shifting the spectra and increasing the triplet-state lifetime. Electron-donating substituents have the opposite effect on the location of the triplet exciton, the spectra, and the triplet-state lifetime. The relation between the intersystem crossing rate constant and the S(1)-T(1) energy gap shows a Marcus relationship with a reorganization energy of 0.83 eV. The calculations show that intersystem crossing occurs by conversion from a nonpolar, delocalized S(1) state to a polar, charge-transfer T(1) state confined to one ligand, accompanied by conformation changes and charge transfer, supporting the experimental evidence for Marcus behavior.
Journal of Physical Chemistry A | 2014
Aleksander Rebane; Mikhail Drobizhev; Nikolay S. Makarov; Geoffrey Wicks; Paweł Wnuk; Yuriy Stepanenko; Joy E. Haley; Douglas M. Krein; Jennifer L. Fore; Aaron R. Burke; Jonathan E. Slagle; Daniel G. McLean; Thomas M. Cooper
We study instantaneous two-photon absorption (2PA) in a series of nominally quasi-centrosymmetric trans-bis(tributylphosphine)-bis-(4-((9,9-diethyl-7-ethynyl-9H-fluoren-2-yl) ethynyl)-R)-platinum complexes, where 11 different substituents, R = N(phenyl)2(NPh2), NH2, OCH3, t-butyl, CH3, H, F, CF3, CN, benzothiazole, and NO2, represent a range of electron-donating (ED) and electron-withdrawing (EW) strengths, while the Pt core acts as a weak ED group. We measure the 2PA cross section in the 540-810 nm excitation wavelength range by complementary femtosecond two-photon excited fluorescence (2PEF) and nonlinear transmission (NLT) methods and compare the obtained values to those of the Pt-core chromophore and the corresponding noncentrosymmetric side group (ligand) chromophores. Peak 2PA cross sections of neutral and ED-substituted Pt complexes occur at S0 → Sn transitions to higher energy states, above the lowest-energy S0 → S1 transition, and the corresponding values increase systematically with increasing ED strength, reaching maximum value, σ2 ∼ 300 GM (1 GM = 10-50 cm4 s), for R = NPh2. At transition energies overlapping with the lowest-energy S0 → S1 transition in the one-photon absorption (1PA) spectrum, the same neutral and ED-substituted Pt complexes show weak 2PA, σ2 < 30-100 GM, which is in agreement with the nearly quadrupolar structure of these systems. Surprisingly, EW-substituted Pt complexes display a very different behavior, where the peak 2PA of the S0 → S1 transition gradually increases with increasing EW strength, reaching values σ2 = 700 GM for R = NO2, while in the S0 → Sn transition region the peak 2PEF cross section decreases. We explained this effect by breaking of inversion symmetry due to conformational distortions associated with low energy barrier for ground-state rotation of the ligands. Our findings are corroborated by theoretical calculations that show large increase of the permanent electric dipole moment change in the S0 → S1 transition when ligands with strong EW substituents are twisted by 90° relative to the planar chromophore. Our NLT results in the S0 → S1 transition region are quantitatively similar to those obtained from the 2PEF measurement. However, at higher transition energy corresponding to S0 → Sn transition region, the NLT method yields effective multiphoton absorption stronger than the 2PEF measurement in the same systems. Such enhancement is observed in all Pt complexes as well as in all ligand chromophores studied, and we tentatively attribute this effect to nearly saturated excited-state absorption (ESA), which may occur if 2PA from the ground state is immediately followed by strongly allowed 1PA to higher excited states.
Journal of Physical Chemistry A | 2012
Thomas M. Cooper; Douglas M. Krein; Aaron R. Burke; Daniel G. McLean; Joy E. Haley; Jonathan E. Slagle; Jennifer Monahan; Albert Fratini
To develop a structure-spectroscopic property relationship in platinum acetylides having poly(aromatic hydrocarbon) ligands, we synthesized a series of chromophores with systematic variation in the number of fused aromatic rings (nFAR) and ligand topology (polyacene (L), polyphenanthrene (Z), or compact(C)). We measured ground-state absorption, fluorescence, and phosphorescence spectra. We also performed nanosecond and femtosecond transient absorption experiments. To extend the range of compounds in the structure-property relationship, we did DFT calculations on an expanded series of chromophores. Both the DFT results and experiments show that the S(1) and T(1) state energies are a function of both nFAR and the ligand topology. In the L chromophores, the S(1) and T(1) state energies decrease linearly with nFAR. In contrast, the S(1) and T(1) state energies of the Z chromophores oscillate around a fixed value with increasing nFAR. The C chromophores have behavior intermediate between the L and Z chromophores. A parallel series of calculations on the ligands shows the same behavior. The S(1)-S(n) energy obtained from ultrafast time-resolved spectra has a linear variation in nFAR. The rate constant for nonradiative decay, k(nr), was calculated from the S(1) state lifetime and decreases with an increasing number of π electrons in the aromatic ring. The result is consistent with the spin-orbit coupling caused by the central platinum heavy atom decreasing with larger nFAR. The present work shows that the framework developed for the analysis of poly(aromatic hydrocarbon) properties is useful for the understanding of the corresponding platinum acetylide complexes.
Journal of Physical Chemistry A | 2017
Thomas M. Cooper; Joy E. Haley; Douglas M. Krein; Aaron R. Burke; Jonathan E. Slagle; Aleksandr Mikhailov; Aleksander Rebane
With the goal of elucidating electronic and conformational effects on structure-spectroscopic property relationships in platinum acetylides, we synthesized a series of nominally centrosymmetric chromophores trans-Pt(PBu3)2(C≡C-Phenyl-X)2, where X = diphenylamino (DPA), NH2, OCH3, t-Bu, CH3, H, F, benzothiazole (BTH), CF3, CN, and NO2. We collected one- and two-photon absorption spectra and also performed density functional theory (DFT) and time-dependent (TD) DFT calculations on the ground- and excited-state properties of these compounds. The DFT calculations revealed facile rotation between the two ligands, suggesting that the compounds exhibit nonplanar ground-state conformations in solution. TDDFT calculation of the S1 state energy and transition dipole moment for a nonplanar conformation gave good agreement with experiment. Two-photon absorption spectra obtained from these compounds allowed estimation of the change of permanent electric dipole moment upon vertical excitation from ground state to S1 state. The values are small Δμ < 1.0 D for neutral substituents such as CH3, H, and F but increase sharply to Δμ ≈ 11 D for electron-accepting NO2. When in a nonplanar conformation, the corresponding calculated Δμ values showed good agreement with the experimental data indicating that the two-photon spectra result from nonplanar ground-state conformations. Previously studied related chromophores having extended conjugation ( Rebane, A.; Drobizhev, M.; Makarov, N. S.; Wicks, G.; Wnuk, P.; Stepanenko, Y.; Haley, J. E.; Krein, D. M.; Fore, J. L.; Burke, A. R.; Slagle, J. E.; McLean, D. G.; Cooper, T. M. J. Phys. Chem. A 2014 , 118 , 3749 - 3759 ) show similar dependence of Δμ on the substituents, which allows us to conclude that the excited-state properties of these floppy chromophores are a function of the electronic properties of the substituents, ligand size, and nonplanar molecular conformation.
Journal of The Chemical Society, Chemical Communications | 1972
Otto A. Gansow; Aaron R. Burke; G. N. La Mar
The addition of small amounts of tris(acetyl-acetonato)chromium(III) to solutions of several metal carbonyls decreases their T1 relaxation times without causing chemical shifts, enabling 13C n.m.r. spectra to be obtained using Fourier Transform techniques.
MRS Proceedings | 2003
Thomas M. Cooper; Benjamin C. Hall; Daniel G. McLean; Joy E. Rogers; Aaron R. Burke; Kenneth Turnbull; Andrew J. Weisner
As part of an effort to develop a spectroscopic structure-property relationship in platinum acetylide oligomers, we have prepared a series of bidentate Pt(PBu 3 ) 2 L 2 compounds. The ligand was the series o-syd-C 6 H 4 -CΞC-(C 6 H 4 -CΞC) n -H, n = 0,1,2. The terminal oligomer unit consisted of a sydnone group ortho to the acetylene carbon. The compounds were characterized by various methods, including 13 C-NMR, ground state absorption, fluorescence, phosphorescence and laser flash photolysis. The acetylenic 13 C-NMR resonances showed sydnone influences that decreased with increasing number of monomer units. The ground state absorption spectra were slightly red shifted from those of the baseline oligomers not having a sydnone group. The low temperature emission and excitation spectra showed complex dependence on excitation and emission wavelengths, suggesting the chromphores resided in a distribution of solvent environments and conformations. Finally, broad triplet state absorption spectra were observed, with absorption throughout the visible and near infrared regions.
Inorganic Chemistry | 2007
Joy E. Rogers; Jonathan E. Slagle; Douglas M. Krein; Aaron R. Burke; Benjamin C. Hall; Albert Fratini; Daniel G. McLean; Paul A. Fleitz; Thomas M. Cooper; Mikhail Drobizhev; Nikolay S. Makarov; Aleksander Rebane; Kye-Young Kim; Richard T. Farley; Kirk S. Schanze
Journal of the American Chemical Society | 1972
Otto A. Gansow; Aaron R. Burke; William D. Vernon
Journal of Physical Chemistry A | 2003
Joy E. Rogers; Kiet A. Nguyen; David C. Hufnagle; Daniel G. McLean; Weijie Su; Kristi M. Gossett; Aaron R. Burke; Sergei A. Vinogradov; and Ruth Pachter; Paul A. Fleitz