Aaron S. David
University of Minnesota
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Aaron S. David.
Microbial Ecology | 2016
Aaron S. David; Eric W. Seabloom; Georgiana May
Microbial symbionts inhabit tissues of all plants and animals. Their community composition depends largely on two ecological processes: (1) filtering by abiotic conditions and host species determining the environments that symbionts are able to colonize and (2) dispersal-limitation determining the pool of symbionts available to colonize a given host and community spatial structure. In plants, the above- and belowground tissues represent such distinct habitats for symbionts that we expect different effects of filtering and spatial structuring on their symbiont communities. In this study, we characterized above- and belowground communities of fungal endophytes—fungi living asymptomatically within plants—to understand the contributions of filtering and spatial structure to endophyte community composition. We used a culture-based approach to characterize endophytes growing in leaves and roots of three species of coastal beachgrasses in dunes of the USA Pacific Northwest. For leaves, endophyte isolation frequency and OTU richness depended primarily on plant host species. In comparison, for roots, both isolation frequency and OTU richness increased from the nutrient-poor front of the dune to the higher-nutrient backdune. Endophyte community composition in leaves exhibited a distance-decay relationship across the region. In a laboratory assay, faster growth rates and lower spore production were more often associated with leaf- than root-inhabiting endophytes. Overall, our results reveal a greater importance of biotic filtering by host species and dispersal-limitation over regional geographic distances for aboveground leaf endophyte communities and stronger effects of abiotic environmental filtering and locally patchy distributions for belowground root endophyte communities.
Evolution | 2012
Mark K. Asplen; Emily Bruns; Aaron S. David; R. Ford Denison; Brendan Epstein; Matthew C. Kaiser; Joe M. Kaser; Christelle Lacroix; Emily K. Mohl; Gina Quiram; Kristina K Prescott; John Stanton-Geddes; John B. Vincent; Peter D. Wragg; Georgiana May
The concept of a trade‐off has long played a prominent role in understanding the evolution of organismal interactions such as mutualism, parasitism, and competition. Given the complexity inherent to interactions between different evolutionary entities, ecological factors may especially limit the power of trade‐off models to predict evolutionary change. Here, we use four case studies to examine the importance of ecological context for the study of trade‐offs in organismal interactions: (1) resource‐based mutualisms, (2) parasite transmission and virulence, (3) plant biological invasions, and (4) host range evolution in parasites and parasitoids. In the first two case studies, mechanistic trade‐off models have long provided a strong theoretical framework but face the challenge of testing assumptions under ecologically realistic conditions. Work under the second two case studies often has a strong ecological grounding, but faces challenges in identifying or quantifying the underlying genetic mechanism of the trade‐off. Attention is given to recent studies that have bridged the gap between evolutionary mechanism and ecological realism. Finally, we explore the distinction between ecological factors that mask the underlying evolutionary trade‐offs, and factors that actually change the trade‐off relationship between fitness‐related traits important to organismal interactions.
Ecology and Evolution | 2013
Aaron S. David; Joe M. Kaser; Amy C. Morey; Alexander M. Roth; David A. Andow
Genetically engineered (GE) insects have the potential to radically change pest management worldwide. With recent approvals of GE insect releases, there is a need for a synthesized framework to evaluate their potential ecological and evolutionary effects. The effects may occur in two phases: a transitory phase when the focal population changes in density, and a steady state phase when it reaches a new, constant density. We review potential effects of a rapid change in insect density related to population outbreaks, biological control, invasive species, and other GE organisms to identify a comprehensive list of potential ecological and evolutionary effects of GE insect releases. We apply this framework to the Anopheles gambiae mosquito – a malaria vector being engineered to suppress the wild mosquito population – to identify effects that may occur during the transitory and steady state phases after release. Our methodology reveals many potential effects in each phase, perhaps most notably those dealing with immunity in the transitory phase, and with pathogen and vector evolution in the steady state phase. Importantly, this framework identifies knowledge gaps in mosquito ecology. Identifying effects in the transitory and steady state phases allows more rigorous identification of the potential ecological effects of GE insect release.
Biological Invasions | 2011
Aaron S. David; Eric S. Menges
Preventing the establishment of a non-native species is critical for ensuring the species does not become invasive, yet most non-native species will have little impact on their environment. Despite this, little is known about what influences whether a species will remain relatively benign, or whether it will cause economic or ecological harm. Understanding a plant’s microhabitat provides insight into the necessary conditions for establishment and the current distribution limitations of a population. We investigated microhabitat preference of the non-native natal grass (Melinis repens (Willd.) Zizka) in Florida scrub using microhabitat sampling to measure vegetation composition. We examined the extent to which microhabitats were associated with natal grass presence and biomass in invaded disturbed scrub and roadside plots using backwards stepwise logistic regression and general linear models to identify significant microhabitat variables. We further compared these plots with those in undisturbed, uninvaded scrub to characterize vegetation across habitat types, and used our model to predict the probability of natal grass invasion in undisturbed scrub. Natal grass preferred microhabitats with high litter volume and distance to shrubs and intermediate cactus, graminoid, and vine cover. Roadside natal grass achieved higher biomass and was less microhabitat limited than disturbed scrub natal grass. We determined that undisturbed scrub plots represent distinct microhabitats that natal grass is unlikely to invade. Microhabitat sampling provides land-managers a non-intrusive technique to assess potential habitat suitability based non-native plant preferences before a costly invasion occurs.
PLOS ONE | 2015
Aaron S. David; Phoebe L. Zarnetske; Sally D. Hacker; Peter Ruggiero; Reuben G. Biel; Eric W. Seabloom
Invasive species can alter the succession of ecological communities because they are often adapted to the disturbed conditions that initiate succession. The extent to which this occurs may depend on how widely they are distributed across environmental gradients and how long they persist over the course of succession. We focus on plant communities of the USA Pacific Northwest coastal dunes, where disturbance is characterized by changes in sediment supply, and the plant community is dominated by two introduced grasses – the long-established Ammophila arenaria and the currently invading A. breviligulata. Previous studies showed that A. breviligulata has replaced A. arenaria and reduced community diversity. We hypothesize that this is largely due to A. breviligulata occupying a wider distribution across spatial environmental gradients and persisting in later-successional habitat than A. arenaria. We used multi-decadal chronosequences and a resurvey study spanning 2 decades to characterize distributions of both species across space and time, and investigated how these distributions were associated with changes in the plant community. The invading A. breviligulata persisted longer and occupied a wider spatial distribution across the dune, and this corresponded with a reduction in plant species richness and native cover. Furthermore, backdunes previously dominated by A. arenaria switched to being dominated by A. breviligulata, forest, or developed land over a 23-yr period. Ammophila breviligulata likely invades by displacing A. arenaria, and reduces plant diversity by maintaining its dominance into later successional backdunes. Our results suggest distinct roles in succession, with A. arenaria playing a more classically facilitative role and A. breviligulata a more inhibitory role. Differential abilities of closely-related invasive species to persist through time and occupy heterogeneous environments allows for distinct impacts on communities during succession.
Genome Announcements | 2016
Aaron S. David; Sajeet Haridas; Kurt LaButti; Joanne Lim; Anna Lipzen; Mei Wang; Kerrie Barry; Igor V. Grigoriev; Joseph W. Spatafora; Georgiana May
ABSTRACT Here, we present the genome sequence of the dark septate fungal endophyte Microdochium bolleyi (Ascomycota, Sordariomycetes, Xylariales). The assembled genome size was 38.84 Mbp and consisted of 173 scaffolds and 13,177 predicted genes.
Mycologia | 2016
Aaron S. David; Gina Quiram; Jennie I. Sirota; Eric W. Seabloom
Fungal endophytes are one of several groups of heterotrophic organisms that associate with living plants. The net effects of these groups of organisms on each other and ultimately on their host plants depend in part on how they facilitate or antagonize one another. In this study we quantified the associations between endophyte communities and herbivory induced by a biological control in the invasive Lythrum salicaria at various spatial scales using a culture-based approach. We found positive associations between herbivory damage and endophyte isolation frequency and richness at the site level and weak, positive associations at the leaf level. Herbivory damage was more strongly influenced by processes at the site level than were endophyte isolation frequency and community structure, which were influenced by processes at the plant and leaf levels. Furthermore, endophytic taxa found in low herbivory sites were nested subsets of those taxa found at high herbivory sites. Our findings suggest that endophyte communities of L. salicaria are associated with, and potentially facilitated by, biocontrol-induced herbivory. Quantifying the associations between heterotrophic groups ultimately may lead to a clearer understanding of their complex interactions with plants.
Molecular Ecology | 2017
Aaron S. David; Eric W. Seabloom; Georgiana May
Disentangling the ecological factors that contribute to the assembly of the microbial symbiont communities within eukaryotic hosts is an ongoing challenge. Broadly speaking, symbiont propagules arrive either from external sources in the environment or from internal sources within the same host individual. To understand the relative importance of these propagule sources to symbiont community assembly, we characterized symbiotic fungal endophyte communities within the roots of three species of beachgrass in a field experiment. We manipulated two aspects of the external environment, successional habitat and physical disturbance. To determine the role of internal sources of propagules for endophyte community assembly, we used beachgrass individuals with different pre‐existing endophyte communities. Endophyte species richness and community composition were characterized using culture‐based and next‐generation sequencing approaches. Our results showed that external propagule sources associated with successional habitat, but not disturbance, were particularly important for colonization of most endophytic taxa. In contrast, internal propagule sources played a minor role for most endophytic taxa but were important for colonization by the dominant taxon Microdochium bolleyi. Our findings highlight the power of manipulative field experiments to link symbiont community assembly to its underlying ecological processes, and to ultimately improve predictions of symbiont community assembly across environments.
Archive | 2016
Aaron S. David; Eric W. Seabloom; Georgiana May
Full descriptions of the files and their variables are included in the readme.txt documentation file.
Ecosphere | 2016
Aaron S. David; Georgiana May; Derek Schmidt; Eric W. Seabloom