Aaron S. Mweene
University of Zambia
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Aaron S. Mweene.
Journal of Virology | 2015
Keita Matsuno; Carla Weisend; Masahiro Kajihara; Colette Matysiak; Brandi N. Williamson; Martin Simuunza; Aaron S. Mweene; Ayato Takada; Robert B. Tesh; Hideki Ebihara
ABSTRACT Until the recent emergence of two human-pathogenic tick-borne phleboviruses (TBPVs) (severe fever with thrombocytopenia syndrome virus [SFTSV] and Heartland virus), TBPVs have been neglected as causative agents of human disease. In particular, no studies have addressed the global distribution of TBPVs, and consequently, our understanding of the mechanism(s) underlying their evolution and emergence remains poor. In order to provide a useful tool for the ecological and epidemiological study of TBPVs, we have established a simple system that can detect all known TBPVs, based on conventional reverse transcription-PCR (RT-PCR) with degenerate primer sets targeting conserved regions of the viral L genome segment. Using this system, we have determined that several viruses that had been isolated from ticks decades ago but had not been taxonomically identified are novel TBPVs. Full-genome sequencing of these viruses revealed a novel fourth TBPV cluster distinct from the three known TBPV clusters (i.e., the SFTS, Bhanja, and Uukuniemi groups) and from the mosquito/sandfly-borne phleboviruses. Furthermore, by using tick samples collected in Zambia, we confirmed that our system had enough sensitivity to detect a new TBPV in a single tick homogenate. This virus, tentatively designated Shibuyunji virus after the region of tick collection, grouped into a novel fourth TBPV cluster. These results indicate that our system can be used as a first-line screening approach for TBPVs and that this kind of work will undoubtedly lead to the discovery of additional novel tick viruses and will expand our knowledge of the evolution and epidemiology of TBPVs. IMPORTANCE Tick-borne phleboviruses (TBPVs) have been largely neglected until the recent emergence of two virulent viruses, severe fever with thrombocytopenia syndrome virus and Heartland virus. Little is known about the global distribution of TBPVs or how these viruses evolved and emerged. A major hurdle to study the distribution of TBPVs is the lack of tools to detect these genetically divergent phleboviruses. In order to address this issue, we have developed a simple, rapid, and cheap RT-PCR system that can detect all known TBPVs and which led to the identification of several novel phleboviruses from previously uncharacterized tick-associated virus isolates. Our system can detect virus in a single tick sample and novel TBPVs that are genetically distinct from any of the known TBPVs. These results indicate that our system will be a useful tool for the surveillance of TBPVs and will facilitate understanding of the ecology of TBPVs.
Emerging Infectious Diseases | 2011
Akihiro Ishii; Yuka Thomas; Ladslav Moonga; Ichiro Nakamura; Aiko Ohnuma; Bernard M. Hang’ombe; Ayato Takada; Aaron S. Mweene; Hirofumi Sawa
To investigate arenavirus in Zambia, we characterized virus from the kidneys of 5 arenavirus RNA–positive rodents (Mastomys natalensis) among 263 captured. Full-genome sequences of the viruses suggested that they were new strains similar to Lassa virus–related arenaviruses. Analyzing samples from additional rodents and other species can elucidate epizootiologic aspects of arenaviruses.
Journal of General Virology | 2011
Yasuko Orba; Shintaro Kobayashi; Ichiro Nakamura; Akihiro Ishii; Bernard M. Hang'ombe; Aaron S. Mweene; Yuka Thomas; Takashi Kimura; Hirofumi Sawa
To investigate polyomavirus infection in wild rodents, we analysed DNA samples from the spleens of 100 wild rodents from Zambia using a broad-spectrum PCR-based assay. A previously unknown polyomavirus genome was identified in a sample from a multimammate mouse (Mastomys species) and the entire viral genome of 4899 bp was subsequently sequenced. This viral genome contained potential ORFs for the capsid proteins, VP1, VP2 and VP3, and early proteins, small t antigen and large T antigen. Phylogenetic analysis showed that it was a novel member of the family Polyomaviridae, and thus the virus was tentatively named mastomys polyomavirus. After transfection of the viral genome into several mammalian cell lines, transient expression of the VP1 and large T antigen proteins was confirmed by immunoblotting and immunocytochemical analyses. Comparison of large T antigen function in mastomys polyomavirus with that in rhesus monkey polyomavirus SV40 and human polyomavirus JC virus revealed that the large T antigen from mastomys polyomavirus interacted with the tumour suppressor protein pRb, but not with p53.
Chemosphere | 2015
John Yabe; Shouta M.M. Nakayama; Yoshinori Ikenaka; Yared Beyene Yohannes; Nesta Bortey-Sam; Balazs Oroszlany; Kaampwe Muzandu; Kennedy Choongo; Abel Nketani Kabalo; John Ntapisha; Aaron S. Mweene; Takashi Umemura; Mayumi Ishizuka
Childhood lead poisoning is a serious public health concern worldwide. Blood lead levels exceeding 5 μg dL(-1) are considered elevated. In Kabwe, the capital of Zambias Central Province, extensive Pb contamination of township soils in the vicinity of a Pb-Zn mine and posing serious health risk to children has been reported. We investigated BLLs in children under the age of 7 years in townships around the mine; where blood samples were collected and analyzed using an ICP-MS. All of the sampled children had BLLs exceeding 5 μg dL(-1). Children in these areas could be at serious risk of Pb toxicity as 18% of the sampled children in Chowa, 57% (Kasanda) and 25% (Makululu) had BLLs exceeding 65 μg dL(-1). Eight children had BLLs exceeding 150 μg dL(-1) with the maximum being 427.8 μg dL(-1). We recommend that medical intervention be commenced in the children with BLL exceeding 45 μg dL(-1).
Parasites & Vectors | 2012
Boniface Namangala; Lottie Hachaambwa; Kiichi Kajino; Aaron S. Mweene; Kyouko Hayashida; Martin Simuunza; Humphrey Simukoko; Kennedy Choongo; Pamela Chansa; Shabir Lakhi; Ladslav Moonga; Amos Chota; Joseph Ndebe; Mutale Nsakashalo-Senkwe; Elizabeth Chizema; Lackson Kasonka; Chihiro Sugimoto
BackgroundLoop-mediated isothermal amplification (LAMP) is a novel strategy which amplifies DNA with high sensitivity and rapidity under isothermal conditions. In the present study, the performance of the repetitive insertion mobile element (RIME)-LAMP and human serum resistance-associated gene (SRA)-LAMP assays were evaluated using clinical specimens obtained from four male patients from Luangwa and Zambezi valleys in Zambia and Zimbabwe, respectively.FindingsThe cases reported in this preliminary communication were all first diagnosed by microscopy, through passive surveillance, and confirmed by both RIME-LAMP and SRA-LAMP. A good correlation between microscopy and LAMP was observed and contributed to staging and successful treatment of patient. RIME-LAMP and SRA-LAMP complimented each other well in all the cases.ConclusionsBoth RIME-LAMP and SRA-LAMP were able to detect Trypanosoma brucei rhodesiense DNA in patient blood and CSF and hence confirmed HAT in the parasitaemic patients. Our study indicates that the LAMP technique is a potential tool for HAT diagnosis, staging and may be useful for making therapeutic decisions. However, no statistically significant conclusion may be drawn due to the limited sample size used in the present study. It is thus imperative to conduct a detailed study to further evaluate the potential of LAMP as a bedside diagnostic test for HAT.
Emerging Health Threats Journal | 2013
Mark Rweyemamu; Peter Mmbuji; Esron D. Karimuribo; Janusz T. Paweska; D.M. Kambarage; Luis Neves; Jean-Marie Ntumba Kayembe; Aaron S. Mweene; Mecky Matee
Formed in 2008, the Southern African Centre for Infectious Disease Surveillance (SACIDS) is a One Health consortium of academic and research institutions involved with infectious diseases of humans and animals. Operating in partnership with world-renowned centres of research in industrialised countries, its mission is to harness innovations in science and technology for improving southern Africas capacity to detect, identify, monitor (DIM) and manage the risk posed by infectious diseases of humans, animals, and ecosystems. The consortiums major capacity development activities include a series of One Health-based Master of Science (MSc) courses and a five-year DIM-driven research program. Additionally, SACIDS organized Africas first One Health conference, in July 2011. This paper describes these and other major activities that SACIDS has undertaken to improve infectious disease surveillance across southern Africa. The paper also describes the role and collaboration of SACIDS with other national, regional and international consortia/networks that share a vision and interest in promoting novel approaches to infectious disease surveillance and outbreak response.
BMC Research Notes | 2012
Bernard M. Hang'ombe; Ichiro Nakamura; Kenny L. Samui; Davy Kaile; Aaron S. Mweene; Bukheti S. Kilonzo; Hirofumi Sawa; Chihiro Sugimoto; Brendan W. Wren
BackgroundYersinia pestis is a bacterium that causes plague which infects a variety of mammals throughout the world. The disease is usually transmitted among wild rodents through a flea vector. The sources and routes of transmission of plague are poorly researched in Africa, yet remains a concern in several sub-Saharan countries. In Zambia, the disease has been reported on annual basis with up to 20 cases per year, without investigating animal reservoirs or vectors that may be responsible in the maintenance and propagation of the bacterium. In this study, we undertook plague surveillance by using PCR amplification of the plasminogen activator gene in fleas.FindingsXenopsylla species of fleas were collected from 83 rodents trapped in a plague endemic area of Zambia. Of these rodents 5 had fleas positive (6.02%) for Y. pestis plasminogen activator gene. All the Y. pestis positive rodents were gerbils.ConclusionsWe conclude that fleas may be responsible in the transmission of Y. pestis and that PCR may provide means of plague surveillance in the endemic areas of Zambia.
Journal of General Virology | 2012
Akihiro Ishii; Yuka Thomas; Ladslav Moonga; Ichiro Nakamura; Aiko Ohnuma; Bernard M. Hang'ombe; Ayato Takada; Aaron S. Mweene; Hirofumi Sawa
In order to survey arenaviruses in the Republic of Zambia, we captured 335 rodents from three cities between 2010 and 2011. Eighteen Luna virus (LUNV) and one lymphocytic choriomeningitis virus (LCMV)-related virus RNAs were detected by one-step RT-PCR from Mastomys natalensis and Mus minutoides, respectively. Four LUNV strains and one LCMV-related virus were isolated, and the whole genome nucleotide sequence was determined by pyrosequencing. Phylogenetic analyses revealed that the LUNV clade consists of two branches that are distinguished by geographical location and that the LCMV-related virus belongs to the LCMV clade, but diverges from the typical LCMVs. Comparison of nucleoprotein amino acid sequences indicated that the LCMV-related virus could be designated a novel arenavirus, which was tentatively named as the Lunk virus. Amino acid sequences of the GP, NP, Z and L proteins showed poor similarity among the three Zambian arenavirus strains, i.e. Luna, Lunk and Lujo virus.
Journal of General Virology | 2015
Michihito Sasaki; Yasuko Orba; Keisuke Ueno; Akihiro Ishii; Ladslav Moonga; Bernard M. Hang'ombe; Aaron S. Mweene; Kimihito Ito; Hirofumi Sawa
Shrews are small insectivorous mammals that are distributed worldwide. Similar to rodents, shrews live on the ground and are commonly found near human residences. In this study, we investigated the enteric virome of wild shrews in the genus Crocidura using a sequence-independent viral metagenomics approach. A large portion of the shrew enteric virome was composed of insect viruses, whilst novel viruses including cyclovirus, picornavirus and picorna-like virus were also identified. Several cycloviruses, including variants of human cycloviruses detected in cerebrospinal fluid and stools, were detected in wild shrews at a high prevalence rate. The identified picornavirus was distantly related to human parechovirus, inferring the presence of a new genus in this family. The identified picorna-like viruses were characterized as different species of calhevirus 1, which was discovered previously in human stools. Complete or nearly complete genome sequences of these novel viruses were determined in this study and then were subjected to further genetic characterization. Our study provides an initial view of the diversity and distinctiveness of the shrew enteric virome and highlights unique novel viruses related to human stool-associated viruses.
Journal of General Virology | 2013
Hiroki Yamaguchi; Shintaro Kobayashi; Akihiro Ishii; Hirohito Ogawa; Ichiro Nakamura; Ladslav Moonga; Bernard M. Hang'ombe; Aaron S. Mweene; Yuka Thomas; Takashi Kimura; Hirofumi Sawa; Yasuko Orba
To examine polyomavirus (PyV) infection in wildlife, we investigated the presence of PyVs in Zambia with permission from the Zambia Wildlife Authority. We analysed 200 DNA samples from the spleens and kidneys (n = 100 each) of yellow baboons and vervet monkeys (VMs) (n = 50 each). We detected seven PyV genome fragments in 200 DNA samples using a nested broad-spectrum PCR method, and identified five full-length viral genomes using an inverse PCR method. Phylogenetic analysis of virally encoded proteins revealed that four PyVs were closely related to either African green monkey PyV or simian agent 12. Only one virus detected from a VM spleen was found to be related, with relatively low nucleotide sequence identity (74 %), to the chimpanzee PyV, which shares 48 % nucleotide sequence identity with the human Merkel cell PyV identified from Merkel cell carcinoma. The obtained entire genome of this virus was 5157 bp and had large T- and small t-antigens, and VP1 and VP2 ORFs. This virus was tentatively named vervet monkey PyV 1 (VmPyV1) as a novel PyV. Comparison with other PyVs revealed that VmPyV1, like chimpanzee PyV, had a longer VP1 ORF. To examine whether the VmPyV1 genome could produce viral proteins in cultured cells, the whole genome was transfected into HEK293T cells. We detected VP1 protein expression in the transfected HEK293T cells by immunocytochemical and immunoblot analyses. Thus, we identified a novel PyV genome from VM spleen.