Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Aaron T. Phillips is active.

Publication


Featured researches published by Aaron T. Phillips.


Journal of General Virology | 2009

Virulence variation among isolates of western equine encephalitis virus in an outbred mouse model.

Christopher H. Logue; Christopher F. Bosio; Thomas Welte; Kimberley M. Keene; Jeremy P. Ledermann; Aaron T. Phillips; Brian J. Sheahan; Dennis J. Pierro; Nicole L. Marlenee; Aaron C. Brault; Catharine M. Bosio; Amber J. Singh; Ann M. Powers; Ken E. Olson

Little is known about viral determinants of virulence associated with western equine encephalitis virus (WEEV). Here, we have analysed six North American WEEV isolates in an outbred CD1 mouse model. Full genome sequence analyses showed < or =2.7 % divergence among the six WEEV isolates. However, the percentage mortality and mean time to death (MTD) varied significantly when mice received subcutaneous injections of 10(3) p.f.u. of each virus. Two WEEV strains, McMillan (McM) and Imperial 181 (IMP), were the most divergent of the six in genome sequence; McM caused 100 % mortality by 5 days post-infection, whereas IMP caused no mortality. McM had significantly higher titres in the brain than IMP. Similar differences in virulence were observed when McM and IMP were administered by aerosol, intranasal or intravenous routes. McM was 100 % lethal with an MTD of 1.9 days when 10(3) p.f.u. of each virus was administered by intracerebral inoculation; in contrast, IMP caused no mortality. The presence of IMP in the brains after infection by different routes and the lack of observed mortality confirmed that IMP is neuroinvasive but not neurovirulent. Based on morbidity, mortality, MTD, severity of brain lesions, virus distribution patterns, routes of infection and differences in infection of cultured cells, McM and IMP were identified as high- and low-virulence isolates, respectively.


PLOS ONE | 2013

Bioluminescent imaging and histopathologic characterization of WEEV neuroinvasion in outbred CD-1 mice.

Aaron T. Phillips; Charles B. Stauft; Tawfik A. Aboellail; Ann M. Toth; Donald L. Jarvis; Ann M. Powers; Ken E. Olson

Western equine encephalitis virus (WEEV; Alphavirus) is a mosquito-borne virus that can cause severe encephalitis in humans and equids. Previous studies have shown that intranasal infection of outbred CD-1 mice with the WEEV McMillan (McM) strain result in high mortality within 4 days of infection. Here in vivo and ex vivo bioluminescence (BLM) imaging was applied on mice intranasally infected with a recombinant McM virus expressing firefly luciferase (FLUC) to track viral neuroinvasion by FLUC detection and determine any correlation between BLM and viral titer. Immunological markers of disease (MCP-1 and IP-10) were measured and compared to wild type virus infection. Histopathology was guided by corresponding BLM images, and showed that neuroinvasion occurred primarily through cranial nerves, mainly in the olfactory tract. Olfactory bulb neurons were initially infected with subsequent spread of the infection into different regions of the brain. WEEV distribution was confirmed by immunohistochemistry as having marked neuronal infection but very few infected glial cells. Axons displayed infection patterns consistent with viral dissemination along the neuronal axis. The trigeminal nerve served as an additional route of neuroinvasion showing significant FLUC expression within the brainstem. The recombinant virus WEEV.McM.FLUC had attenuated replication kinetics and induced a weaker immunological response than WEEV.McM but produced comparable pathologies. Immunohistochemistry staining for FLUC and WEEV antigen showed that transgene expression was present in all areas of the CNS where virus was observed. BLM provides a quantifiable measure of alphaviral neural disease progression and a method for evaluating antiviral strategies.


Molecular Pharmacology | 2015

The Nurr1 Activator 1,1-Bis(3′-Indolyl)-1-(p-Chlorophenyl)Methane Blocks Inflammatory Gene Expression in BV-2 Microglial Cells by Inhibiting Nuclear Factor κB

Briana R. De Miranda; Katriana A. Popichak; Sean L. Hammond; Bryce A. Jorgensen; Aaron T. Phillips; Stephen Safe; Ronald B. Tjalkens

NR4A family orphan nuclear receptors are an important class of transcription factors for development and homeostasis of dopaminergic neurons that also inhibit expression of inflammatory genes in glial cells. The identification of NR4A2 (Nurr1) as a suppressor of nuclear factor κB (NF-κB)–related neuroinflammatory genes in microglia and astrocytes suggests that this receptor could be a target for pharmacologic intervention in neurologic disease, but compounds that promote this activity are lacking. Selected diindolylmethane compounds (C-DIMs) have been shown to activate or inactivate nuclear receptors, including Nurr1, in cancer cells and also suppress astrocyte inflammatory signaling in vitro. Based upon these data, we postulated that C-DIM12 [1,1-bis(3′-indolyl)-1-(p-chlorophenyl) methane] would suppress inflammatory signaling in microglia by a Nurr1-dependent mechanism. C-DIM12 inhibited lipopolysaccharide (LPS)–induced expression of NF-κB–regulated genes in BV-2 microglia including nitric oxide synthase (NOS2), interleukin-6 (IL-6), and chemokine (C-C motif) ligand 2 (CCL2), and the effects were attenuated by Nurr1-RNA interference. Additionally, C-DIM12 decreased NF-κB activation in NF-κB–GFP (green fluorescent protein) reporter cells and enhanced nuclear translocation of Nurr1 primary microglia. Chromatin immunoprecipitation assays indicated that C-DIM12 decreased lipopolysaccharide-induced p65 binding to the NOS2 promoter and concurrently enhanced binding of Nurr1 to the p65-binding site. Consistent with these findings, C-DIM12 also stabilized binding of the Corepressor for Repressor Element 1 Silencing Transcription Factor (CoREST) and the Nuclear Receptor Corepressor 2 (NCOR2). Collectively, these data identify C-DIM12 as a modulator of Nurr1 activity that results in inhibition of NF-κB–dependent gene expression in glial cells by stabilizing nuclear corepressor proteins, which reduces binding of p65 to inflammatory gene promoters.


Antiviral Research | 2010

Treatment with cationic liposome-DNA complexes (CLDCs) protects mice from lethal Western equine encephalitis virus (WEEV) challenge.

Christopher H. Logue; Aaron T. Phillips; Eric C. Mossel; Jeremy P. Ledermann; Thomas Welte; Steve W. Dow; Ken E. Olson; Ann M. Powers

Having recently characterized a CD-1 outbred mouse model of pathogenesis for Western equine encephalitis virus, we examined the possible protective effects of cationic liposome-DNA complexes (CLDCs) against encephalitic arboviral infection. In this investigation, mice were pre-treated, co-treated, or post-treated with CLDC then challenged with a subcutaneous or aerosol dose of the highly virulent WEEV-McMillan strain, lethal in mice 4-5 days after inoculation. Pre-treatment with CLDCs provided a significant protective effect in mice, which was reflected in significantly increased survival rates. Further, in some instances a therapeutic effect of CLDC administration up to 12h after WEEV challenge was observed. Mice treated with CLDC had significantly increased serum IFN-gamma, TNF-alpha, and IL-12, suggesting a strong Th1-biased antiviral activation of the innate immune system. In virus-infected animals, large increases in production of IFN-gamma, TNF-alpha, MCP-1, IL-12, and IL-10 in the brain were observed by 72h after infection, consistent with neuroinvasion and viral replication in the CNS. These results indicate that strong non-specific activation of innate immunity with an immune therapeutic such as CLDC is capable of eliciting significant protective immunity against a rapidly lethal strain of WEEV and suggest a possible prophylactic option for exposed individuals.


PLOS ONE | 2013

Molecular Determinants of Mouse Neurovirulence and Mosquito Infection for Western Equine Encephalitis Virus

Eric C. Mossel; Jeremy P. Ledermann; Aaron T. Phillips; Erin M. Borland; Ann M. Powers; Ken E. Olson

Western equine encephalitis virus (WEEV) is a naturally occurring recombinant virus derived from ancestral Sindbis and Eastern equine encephalitis viruses. We previously showed that infection by WEEV isolates McMillan (McM) and IMP-181 (IMP) results in high (∼90–100%) and low (0%) mortality, respectively, in outbred CD-1 mice when virus is delivered by either subcutaneous or aerosol routes. However, relatively little is known about specific virulence determinants of WEEV. We previously observed that IMP infected Culex tarsalis mosquitoes at a high rate (app. 80%) following ingestion of an infected bloodmeal but these mosquitoes were infected by McM at a much lower rate (10%). To understand the viral role in these phenotypic differences, we characterized the pathogenic phenotypes of McM/IMP chimeras. Chimeras encoding the E2 of McM on an IMP backbone (or the reciprocal) had the most significant effect on infection phenotypes in mice or mosquitoes. Furthermore, exchanging the arginine, present on IMP E2 glycoprotein at position 214, for the glutamine present at the same position on McM, ablated mouse mortality. Curiously, the reciprocal exchange did not confer mouse virulence to the IMP virus. Mosquito infectivity was also determined and significantly, one of the important loci was the same as the mouse virulence determinant identified above. Replacing either IMP E2 amino acid 181 or 214 with the corresponding McM amino acid lowered mosquito infection rates to McM-like levels. As with the mouse neurovirulence, reciprocal exchange of amino acids did not confer mosquito infectivity. The identification of WEEV E2 amino acid 214 as necessary for both IMP mosquito infectivity and McM mouse virulence indicates that they are mutually exclusive phenotypes and suggests an explanation for the lack of human or equine WEE cases even in the presence of active transmission.


Journal of Virology | 2014

Liposome-Antigen-Nucleic Acid Complexes Protect Mice from Lethal Challenge with Western and Eastern Equine Encephalitis Viruses

Aaron T. Phillips; Tony Schountz; Ann M. Toth; Amber B. Rico; Donald L. Jarvis; Ann M. Powers; Ken E. Olson

ABSTRACT Alphaviruses are mosquito-borne viruses that cause significant disease in animals and humans. Western equine encephalitis virus (WEEV) and eastern equine encephalitis virus (EEEV), two New World alphaviruses, can cause fatal encephalitis, and EEEV is a select agent of concern in biodefense. However, we have no antiviral therapies against alphaviral disease, and current vaccine strategies target only a single alphavirus species. In an effort to develop new tools for a broader response to outbreaks, we designed and tested a novel alphavirus vaccine comprised of cationic lipid nucleic acid complexes (CLNCs) and the ectodomain of WEEV E1 protein (E1ecto). Interestingly, we found that the CLNC component, alone, had therapeutic efficacy, as it increased survival of CD-1 mice following lethal WEEV infection. Immunization with the CLNC-WEEV E1ecto mixture (lipid-antigen-nucleic acid complexes [LANACs]) using a prime-boost regimen provided 100% protection in mice challenged with WEEV subcutaneously, intranasally, or via mosquito. Mice immunized with LANACs mounted a strong humoral immune response but did not produce neutralizing antibodies. Passive transfer of serum from LANAC E1ecto-immunized mice to nonimmune CD-1 mice conferred protection against WEEV challenge, indicating that antibody is sufficient for protection. In addition, the LANAC E1ecto immunization protocol significantly increased survival of mice following intranasal or subcutaneous challenge with EEEV. In summary, our LANAC formulation has therapeutic potential and is an effective vaccine strategy that offers protection against two distinct species of alphavirus irrespective of the route of infection. We discuss plausible mechanisms as well the potential utility of our LANAC formulation as a pan-alphavirus vaccine.


Journal of Virology | 2016

Entry Sites of Venezuelan and Western Equine Encephalitis Viruses in the Mouse Central Nervous System following Peripheral Infection

Aaron T. Phillips; Amber B. Rico; Charles B. Stauft; Sean L. Hammond; Tawfik A. Aboellail; Ronald B. Tjalkens; Ken E. Olson

ABSTRACT Venezuelan and western equine encephalitis viruses (VEEV and WEEV; Alphavirus; Togaviridae) are mosquito-borne pathogens causing central nervous system (CNS) disease in humans and equids. Adult CD-1 mice also develop CNS disease after infection with VEEV and WEEV. Adult CD-1 mice infected by the intranasal (i.n.) route, showed that VEEV and WEEV enter the brain through olfactory sensory neurons (OSNs). In this study, we injected the mouse footpad with recombinant WEEV (McMillan) or VEEV (subtype IC strain 3908) expressing firefly luciferase (fLUC) to simulate mosquito infection and examined alphavirus entry in the CNS. Luciferase expression served as a marker of infection detected as bioluminescence (BLM) by in vivo and ex vivo imaging. BLM imaging detected WEEV and VEEV at 12 h postinoculation (hpi) at the injection site (footpad) and as early as 72 hpi in the brain. BLM from WEEV.McM-fLUC and VEEV.3908-fLUC injections was initially detected in the brains circumventricular organs (CVOs). No BLM activity was detected in the olfactory neuroepithelium or OSNs. Mice were also injected in the footpad with WEEV.McM expressing DsRed (Discosoma sp.) and imaged by confocal fluorescence microscopy. DsRed imaging supported our BLM findings by detecting WEEV in the CVOs prior to spreading along the neuronal axis to other brain regions. Taken together, these findings support our hypothesis that peripherally injected alphaviruses enter the CNS by hematogenous seeding of the CVOs followed by centripetal spread along the neuronal axis. IMPORTANCE VEEV and WEEV are mosquito-borne viruses causing sporadic epidemics in the Americas. Both viruses are associated with CNS disease in horses, humans, and mouse infection models. In this study, we injected VEEV or WEEV, engineered to express bioluminescent or fluorescent reporters (fLUC and DsRed, respectively), into the footpads of outbred CD-1 mice to simulate transmission by a mosquito. Reporter expression serves as detectable bioluminescent and fluorescent markers of VEEV and WEEV replication and infection. Bioluminescence imaging, histological examination, and confocal fluorescence microscopy were used to identify early entry sites of these alphaviruses in the CNS. We observed that specific areas of the brain (circumventricular organs [CVOs]) consistently showed the earliest signs of infection with VEEV and WEEV. Histological examination supported VEEV and WEEV entering the brain of mice at specific sites where the blood-brain barrier is naturally absent.


Virology | 2016

Venezuelan and western equine encephalitis virus E1 liposome antigen nucleic acid complexes protect mice from lethal challenge with multiple alphaviruses

Amber B. Rico; Aaron T. Phillips; Tony Schountz; Donald L. Jarvis; Ronald B. Tjalkens; Ann M. Powers; Ken E. Olson

Eastern, Venezuelan and western equine encephalitis viruses (EEEV, VEEV, and WEEV) are mosquito-borne viruses that cause substantial disease in humans and other vertebrates. Vaccines are limited and current treatment options have not proven successful. In this report, we vaccinated outbred mice with lipid-antigen-nucleic acid-complexes (LANACs) containing VEEV E1+WEEV E1 antigen and characterized protective efficacy against lethal EEEV, VEEV, and WEEV challenge. Vaccination resulted in complete protection against EEEV, VEEV, and WEEV in CD-1 mice. Measurements of bioluminescence and plaque reduction neutralization tests (PRNTs) indicate that LANAC VEEV E1+WEEV E1 vaccination is sterilizing against VEEV and WEEV challenge; whereas immunity to EEEV is not sterilizing. Passive transfer of rabbit VEEV E1+WEEV E1 immune serum to naive mice extended the mean time to death (MTD) of EEEV challenged mice and provided significant protection from lethal VEEV and WEEV challenge.


Viruses | 2018

Involvement of Pro-Inflammatory Macrophages in Liver Pathology of Pirital Virus-Infected Syrian Hamsters

Corey L. Campbell; Aaron T. Phillips; Amber B. Rico; Amanda McGuire; Tawfik A. Aboellail; Sandra L. Quackenbush; Ken E. Olson; Tony Schountz

New World arenaviruses cause fatal hemorrhagic disease in South America. Pirital virus (PIRV), a mammarenavirus hosted by Alston’s cotton rat (Sigmodon alstoni), causes a disease in Syrian golden hamsters (Mesocricetus auratus) (biosafety level-3, BSL-3) that has many pathologic similarities to the South American hemorrhagic fevers (BSL-4) and, thus, is considered among the best small-animal models for human arenavirus disease. Here, we extend in greater detail previously described clinical and pathological findings in Syrian hamsters and provide evidence for a pro-inflammatory macrophage response during PIRV infection. The liver was the principal target organ of the disease, and signs of Kupffer cell involvement were identified in mortally infected hamster histopathology data. Differential expression analysis of liver mRNA revealed signatures of the pro-inflammatory response, hematologic dysregulation, interferon pathway and other host response pathways, including 17 key transcripts that were also reported in two non-human primate (NHP) arenavirus liver-infection models, representing both Old and New World mammarenavirus infections. Although antigen presentation may differ among rodent and NHP species, key hemostatic and innate immune-response components showed expression parallels. Signatures of pro-inflammatory macrophage involvement in PIRV-infected livers included enrichment of Ifng, Nfkb2, Stat1, Irf1, Klf6, Il1b, Cxcl10, and Cxcl11 transcripts. Together, these data indicate that pro-inflammatory macrophage M1 responses likely contribute to the pathogenesis of acute PIRV infection.


BMC Microbiology | 2009

Suppression of RNA interference increases alphavirus replication and virus-associated mortality in Aedes aegypti mosquitoes

Chris M. Cirimotich; Jaclyn C. Scott; Aaron T. Phillips; Brian J. Geiss; Ken E. Olson

Collaboration


Dive into the Aaron T. Phillips's collaboration.

Top Co-Authors

Avatar

Ken E. Olson

Colorado State University

View shared research outputs
Top Co-Authors

Avatar

Ann M. Powers

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Amber B. Rico

Colorado State University

View shared research outputs
Top Co-Authors

Avatar

Tony Schountz

Colorado State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eric C. Mossel

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Jeremy P. Ledermann

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge