Aaron W. Richardson
Battelle Memorial Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Aaron W. Richardson.
Journal of Occupational and Environmental Hygiene | 2008
Jonathan P. Eshbaugh; Paul D. Gardner; Aaron W. Richardson; Kent C. Hofacre
This study investigated the effect of high flow conditions on aerosol penetration and the relationship between penetration at constant and cyclic flow conditions. National Institute for Occupational Safety and Health (NIOSH)-approved N95 and P100 filtering facepiece respirators and cartridges were challenged with inert solid and oil aerosols. A combination of monodisperse aerosol and size-specific aerosol measurement equipment allowed count-based penetration measurement of particles with nominal diameters ranging from 0.02 to 2.9 μm. Three constant flow conditions (85, 270, and 360 L/min) were selected to match the minute, inhalation mean, and inhalation peak flows of the four cyclic flow conditions (40, 85, 115, and 135 L/min) tested. As expected, penetration was found to increase under increased constant and cyclic flow conditions. The most penetrating particle size (MPPS) generally ranged from 0.05 to 0.2 μm for P100 filters and was approximately 0.05 μm for N95 filters. Although penetration increased at the high flow conditions, the MPPS was relatively unaffected by flow. Of the constant flows tested, the flows equivalent to cyclic inhalation mean and peak flows best approximated the penetration measurements of the corresponding cyclic flows.
Journal of Occupational and Environmental Hygiene | 2013
Paul D. Gardner; Jonathan P. Eshbaugh; Shannon D. Harpest; Aaron W. Richardson; Kent C. Hofacre
The growing threat of an influenza pandemic presents a unique challenge to healthcare workers, emergency responders, and the civilian population. The Occupational Safety and Health Administration (OSHA) recommends National Institute for Occupational Safety and Health (NIOSH)-approved respirators to provide protection against infectious airborne viruses in various workplace settings. The filtration efficiency of selected NIOSH-approved particulate N95 and P100 filtering facepiece respirators (FFRs) and filter cartridges was investigated against the viable MS2 virus, a non-pathogenic bacteriophage, aerosolized from a liquid suspension. Tests were performed under two cyclic flow conditions (minute volumes of 85 and 135 L/min) and two constant flow rates (85 and 270 L/min). The mean penetrations of viable MS2 through the N95 and P100 FFRs/cartridges were typically less than 2 and 0.03%, respectively, under all flow conditions. All N95 and P100 FFR and cartridge models assessed in this study, therefore, met or exceeded their respective efficiency ratings of 95 and 99.97% against the viable MS2 test aerosol, even under the very high flow conditions. These NIOSH-approved FFRs and particulate respirators equipped with these cartridges can be anticipated to achieve expected levels of protection (consistent with their assigned protection factor) against airborne viral agents, provided that they are properly selected, fitted, worn, and maintained.
Annals of Occupational Hygiene | 2012
Edward M. Fisher; Aaron W. Richardson; Shannon D. Harpest; Kent C. Hofacre; Ronald E. Shaffer
Abstract The supply of N95 filtering facepiece respirators (FFRs) may not be adequate to match demand during a pandemic outbreak. One possible strategy to maintain supplies in healthcare settings is to extend FFR use for multiple patient encounters; however, contaminated FFRs may serve as a source for the airborne transmission of virus particles. In this study, reaerosolization of virus particles from contaminated FFRs was examined using bacteriophage MS2 as a surrogate for airborne pathogenic viruses. MS2 was applied to FFRs as droplets or droplet nuclei. A simulated cough (370 l min−1 peak flow) provided reverse airflow through the contaminated FFR. The number and size of the reaerosolized particles were measured using gelatin filters and an Andersen Cascade Impactor (ACI). Two droplet nuclei challenges produced higher percentages of reaerosolized particles (0.21 and 0.08%) than a droplet challenge (<0.0001%). Overall, the ACI-determined size distribution of the reaerosolized particles was larger than the characterized loading virus aerosol. This study demonstrates that only a small percentage of viable MS2 viruses was reaerosolized from FFRs by reverse airflow under the conditions evaluated, suggesting that the risks of exposure due to reaerosolization associated with extended use can be considered negligible for most respiratory viruses. However, risk assessments should be updated as new viruses emerge and better workplace exposure data becomes available.
Journal of Occupational and Environmental Hygiene | 2004
Paul D. Gardner; Kent C. Hofacre; Aaron W. Richardson
Although not well established, mask leakage measured using submicron aerosol challenges is generally accepted as being representative of vapor challenges. The purpose of this study was to compare simulated respirator fit factors (FFs) measured using vapor challenges to those measured using an aerosol challenge. A full-facepiece respirator was mounted on a headform inside a small enclosure and modified with controlled leaks (laser-drilled orifices) to produce FFs ranging from about 300 to 30,000. A breathing machine was used to simulate breathing conditions of 1.0 L tidal volume and 25 breaths/min. A monodisperse aerosol consisting of 0.72 μm polystyrene latex spheres (PSL) was used for the reference test aerosol, and FFs were measured using a laser aerosol spectrometer. An inert gas, sulfur hexafluoride (SF6), and an organic vapor, isoamyl acetate (IAA), were used as the vapor challenges. The in-mask concentration of SF6 was measured using a gas chromatograph (GC). A GC was also used to quantify in-mask IAA concentration samples actively collected with sorbent tubes. FF measurements made with the PSL aerosol challenge were conducted in sequence with the SF6 and IAA challenges, without disturbing the mask, to yield matched data pairs for regression analysis. FFs measured using the PSL reference aerosol were found to correlate well with those measured with the SF6 (r2 = 0.99) and IAA (r2 = 0.98) vapor challenges. FFs measured using IAA tended to be higher at values below 10,000. The best agreement was observed with the inert gas, SF6. The results of this study suggest that submicron aerosols are suitable as quantitative fit test challenges for assessing the performance of respirators against inert vapors.
Archive | 2006
Aaron W. Richardson; Jonathan P. Eshbaugh; Kent C. Hofacre; Paul D. Gardner
Archive | 2010
Aaron W. Richardson; Kent C. Hofacre; Jeff Weed; Ricky Holm; Richard Remiarz
Archive | 2008
Aaron W. Richardson; Kent C. Hofacre; Paul D. Gardner
Archive | 2001
Kent C. Hofacre; Aaron W. Richardson
Archive | 2015
Gregory Olson; Richard Remiarz; Jeff Weed; Aaron W. Richardson; Kent C. Hofacre; Ricky Holm
Advances and Applications in Electroceramics II: Ceramic Transactions, Volume 235 | 2012
Mark Stasik; Jay R. Sayre; Rachel M. Thurston; Wes Childers; Aaron W. Richardson; Megan Sesslar Moore; Paul D. Gardner