Aasa Feragen
University of Copenhagen
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Aasa Feragen.
IEEE Transactions on Pattern Analysis and Machine Intelligence | 2013
Aasa Feragen; Pechin Lo; M. de Bruijne; Mads Nielsen; François Lauze
To develop statistical methods for shapes with a tree-structure, we construct a shape space framework for tree-shapes and study metrics on the shape space. This shape space has singularities which correspond to topological transitions in the represented trees. We study two closely related metrics on the shape space, TED and QED. QED is a quotient euclidean distance arising naturally from the shape space formulation, while TED is the classical tree edit distance. Using Gromovs metric geometry, we gain new insight into the geometries defined by TED and QED. We show that the new metric QED has nice geometric properties that are needed for statistical analysis: Geodesics always exist and are generically locally unique. Following this, we can also show the existence and generic local uniqueness of average trees for QED. TED, while having some algorithmic advantages, does not share these advantages. Along with the theoretical framework we provide experimental proof-of-concept results on synthetic data trees as well as small airway trees from pulmonary CT scans. This way, we illustrate that our framework has promising theoretical and qualitative properties necessary to build a theory of statistical tree-shape analysis.
asian conference on computer vision | 2010
Aasa Feragen; François Lauze; Pechin Lo; Marleen de Bruijne; Mads Nielsen
In order to develop statistical methods for shapes with a tree-structure, we construct a shape space framework for treelike shapes and study metrics on the shape space. The shape space has singularities, which correspond to topological transitions in the represented trees. We study two closely related metrics, TED and QED. The QED is a quotient euclidean distance arising from the new shape space formulation, while TED is essentially the classical tree edit distance. Using Gromovs metric geometry we gain new insight into the geometries defined by TED and QED. In particular, we show that the new metric QED has nice geometric properties which facilitate statistical analysis, such as existence and local uniqueness of geodesics and averages. TED, on the other hand, has algorithmic advantages, while it does not share the geometric strongpoints of QED. We provide a theoretical framework as well as computational results such as matching of airway trees from pulmonary CT scans and geodesics between synthetic data trees illustrating the dynamic and geometric properties of the QED metric.
medical image computing and computer assisted intervention | 2012
Aasa Feragen; Jens Petersen; Megan Owen; Pechin Lo; Laura H. Thomsen; Mathilde M. W. Wille; Asger Dirksen; Marleen de Bruijne
We present a fast and robust supervised algorithm for labeling anatomical airway trees, based on geodesic distances in a geometric tree-space. Possible branch label configurations for a given tree are evaluated based on distances to a training set of labeled trees. In tree-space, the tree topology and geometry change continuously, giving a natural way to automatically handle anatomical differences and noise. The algorithm is made efficient using a hierarchical approach, in which labels are assigned from the top down. We only use features of the airway centerline tree, which are relatively unaffected by pathology.
computer vision and pattern recognition | 2015
Aasa Feragen; François Lauze; Søren Hauberg
We consider kernel methods on general geodesic metric spaces and provide both negative and positive results. First we show that the common Gaussian kernel can only be generalized to a positive definite kernel on a geodesic metric space if the space is flat. As a result, for data on a Riemannian manifold, the geodesic Gaussian kernel is only positive definite if the Riemannian manifold is Euclidean. This implies that any attempt to design geodesic Gaussian kernels on curved Riemannian manifolds is futile. However, we show that for spaces with conditionally negative definite distances the geodesic Laplacian kernel can be generalized while retaining positive definiteness. This implies that geodesic Laplacian kernels can be generalized to some curved spaces, including spheres and hyperbolic spaces. Our theoretical results are verified empirically.
international conference on computer vision | 2011
Aasa Feragen; Søren Hauberg; Mads Nielsen; François Lauze
The mean is often the most important statistic of a dataset as it provides a single point that summarizes the entire set. While the mean is readily defined and computed in Euclidean spaces, no commonly accepted solutions are currently available in more complicated spaces, such as spaces of tree-structured data. In this paper we study the notion of means, both generally in Gromovs CAT(0)-spaces (metric spaces of non-positive curvature), but also specifically in the space of tree-like shapes. We prove local existence and uniqueness of means in such spaces and discuss three different algorithms for computing means. We make an experimental evaluation of the three algorithms through experiments on three different sets of data with tree-like structure: a synthetic dataset, a leaf morphology dataset from images, and a set of human airway subtrees from medical CT scans. This experimental study provides great insight into the behavior of the different methods and how they relate to each other. More importantly, it also provides mathematically well-founded, tractable and robust “average trees”. This statistic is of utmost importance due to the ever-presence of tree-like structures in human anatomy, e.g., airways and vascularization systems.
medical image computing and computer-assisted intervention | 2014
Michael Schober; Niklas Kasenburg; Aasa Feragen; Philipp Hennig; Søren Hauberg
Tractography in diffusion tensor imaging estimates connectivity in the brain through observations of local diffusivity. These observations are noisy and of low resolution and, as a consequence, connections cannot be found with high precision. We use probabilistic numerics to estimate connectivity between regions of interest and contribute a Gaussian Process tractography algorithm which allows for both quantification and visualization of its posterior uncertainty. We use the uncertainty both in visualization of individual tracts as well as in heat maps of tract locations. Finally, we provide a quantitative evaluation of different metrics and algorithms showing that the adjoint metric (8] combined with our algorithm produces paths which agree most often with experts.
information processing in medical imaging | 2013
Aasa Feragen; Jens Petersen; Dominik Grimm; Asger Dirksen; Jesper Holst Pedersen; Karsten M. Borgwardt; Marleen de Bruijne
Methodological contributions: This paper introduces a family of kernels for analyzing (anatomical) trees endowed with vector valued measurements made along the tree. While state-of-the-art graph and tree kernels use combinatorial tree/graph structure with discrete node and edge labels, the kernels presented in this paper can include geometric information such as branch shape, branch radius or other vector valued properties. In addition to being flexible in their ability to model different types of attributes, the presented kernels are computationally efficient and some of them can easily be computed for large datasets (N ~10.000) of trees with 30−600 branches. Combining the kernels with standard machine learning tools enables us to analyze the relation between disease and anatomical tree structure and geometry. Experimental results: The kernels are used to compare airway trees segmented from low-dose CT, endowed with branch shape descriptors and airway wall area percentage measurements made along the tree. Using kernelized hypothesis testing we show that the geometric airway trees are significantly differently distributed in patients with Chronic Obstructive Pulmonary Disease (COPD) than in healthy individuals. The geometric tree kernels also give a significant increase in the classification accuracy of COPD from geometric tree structure endowed with airway wall thickness measurements in comparison with state-of-the-art methods, giving further insight into the relationship between airway wall thickness and COPD. Software: Software for computing kernels and statistical tests is available at http://image.diku.dk/aasa/software.php.
NeuroImage | 2016
Niklas Kasenburg; Matthew George Liptrot; Nina Linde Reislev; Silas Nyboe Ørting; Mads Nielsen; Ellen Garde; Aasa Feragen
Tractography is the standard tool for automatic delineation of white matter tracts from diffusion weighted images. However, the output of tractography often requires post-processing to remove false positives and ensure a robust delineation of the studied tract, and this demands expert prior knowledge. Here we demonstrate how such prior knowledge, or indeed any prior spatial information, can be automatically incorporated into a shortest-path tractography approach to produce more robust results. We describe how such a prior can be automatically generated (learned) from a population, and we demonstrate that our framework also retains support for conventional interactive constraints such as waypoint regions. We apply our approach to the open access, high quality Human Connectome Project data, as well as a dataset acquired on a typical clinical scanner. Our results show that the use of a learned prior substantially increases the overlap of tractography output with a reference atlas on both populations, and this is confirmed by visual inspection. Furthermore, we demonstrate how a prior learned on the high quality dataset significantly increases the overlap with the reference for the more typical yet lower quality data acquired on a clinical scanner. We hope that such automatic incorporation of prior knowledge and the obviation of expert interactive tract delineation on every subject, will improve the feasibility of large clinical tractography studies.
IEEE Transactions on Pattern Analysis and Machine Intelligence | 2016
Søren Hauberg; Aasa Feragen; Raffi Enficiaud; Michael J. Black
In large datasets, manual data verification is impossible, and we must expect the number of outliers to increase with data size. While principal component analysis (PCA) can reduce data size, and scalable solutions exist, it is well-known that outliers can arbitrarily corrupt the results. Unfortunately, state-of-the-art approaches for robust PCA are not scalable. We note that in a zero-mean dataset, each observation spans a one-dimensional subspace, giving a point on the Grassmann manifold. We show that the average subspace corresponds to the leading principal component for Gaussian data. We provide a simple algorithm for computing this Grassmann Average (GA), and show that the subspace estimate is less sensitive to outliers than PCA for general distributions. Because averages can be efficiently computed, we immediately gain scalability. We exploit robust averaging to formulate the Robust Grassmann Average (RGA) as a form of robust PCA. The resulting Trimmed Grassmann Average (TGA) is appropriate for computer vision because it is robust to pixel outliers. The algorithm has linear computational complexity and minimal memory requirements. We demonstrate TGA for background modeling, video restoration, and shadow removal. We show scalability by performing robust PCA on the entire Star Wars IV movie; a task beyond any current method. Source code is available online.
IEEE Transactions on Medical Imaging | 2015
Aasa Feragen; Jens Petersen; Megan Owen; Pechin Lo; Laura H. Thomsen; Mathilde M. W. Wille; Asger Dirksen; Marleen de Bruijne
We present a fast and robust atlas-based algorithm for labeling airway trees, using geodesic distances in a geometric tree-space. Possible branch label configurations for an unlabeled airway tree are evaluated using distances to a training set of labeled airway trees. In tree-space, airway tree topology and geometry change continuously, giving a natural automatic handling of anatomical differences and noise. A hierarchical approach makes the algorithm efficient, assigning labels from the trachea and downwards. Only the airway centerline tree is used, which is relatively unaffected by pathology. The algorithm is evaluated on 80 segmented airway trees from 40 subjects at two time points, labeled by three medical experts each, testing accuracy, reproducibility and robustness in patients with chronic obstructive pulmonary disease (COPD). The accuracy of the algorithm is statistically similar to that of the experts and not significantly correlated with COPD severity. The reproducibility of the algorithm is significantly better than that of the experts, and negatively correlated with COPD severity. Evaluation of the algorithm on a longitudinal set of 8724 trees from a lung cancer screening trial shows that the algorithm can be used in large scale studies with high reproducibility, and that the negative correlation of reproducibility with COPD severity can be explained by missing branches, for instance due to segmentation problems in COPD patients. We conclude that the algorithm is robust to COPD severity given equally complete airway trees, and comparable in performance to that of experts in pulmonary medicine, emphasizing the suitability of the labeling algorithm for clinical use.