Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Abdallah M. Samy is active.

Publication


Featured researches published by Abdallah M. Samy.


Memorias Do Instituto Oswaldo Cruz | 2016

Mapping the global geographic potential of Zika virus spread

Abdallah M. Samy; Stephanie Thomas; Ahmed Abd El Wahed; Kevin P. Cohoon; A. Townsend Peterson

The Americas are presently experiencing the most serious known outbreak of Zika virus (ZIKV). Here, we present a novel set of analyses using environmental characteristics, vector mosquito distributions, and socioeconomic risk factors to develop the first map to detail global ZIKV transmission risk in multiple dimensions based on ecological niche models. Our model predictions were tested against independent evaluation data sets, and all models had predictive ability significantly better than random expectations. The study addresses urgent knowledge gaps regarding (1) the potential geographic scope of the current ZIKV epidemic, (2) the global potential for spread of ZIKV, and (3) drivers of ZIKV transmission. Our analysis of potential drivers of ZIKV distributions globally identified areas vulnerable in terms of some drivers, but not for others. The results of these analyses can guide regional education and preparedness efforts, such that medical personnel will be better prepared for diagnosis of potential ZIKV cases as they appear.


PLOS ONE | 2016

Climate Change Influences on the Global Potential Distribution of the Mosquito Culex quinquefasciatus, Vector of West Nile Virus and Lymphatic Filariasis

Abdallah M. Samy; Arwa H. Elaagip; Mohamed A. Kenawy; Constância Flávia Junqueira Ayres; A. Townsend Peterson; Doaa E Soliman

Rapid emergence of most vector-borne diseases (VBDs) may be associated with range expansion of vector populations. Culex quinquefasciatus Say 1823 is a potential vector of West Nile virus, Saint Louis encephalitis virus, and lymphatic filariasis. We estimated the potential distribution of Cx. quinquefasciatus under both current and future climate conditions. The present potential distribution of Cx. quinquefasciatus showed high suitability across low-latitude parts of the world, reflecting the current distribution of the species. Suitable conditions were identified also in narrow zones of North Africa and Western Europe. Model transfers to future conditions showed a potential distribution similar to that under present-day conditions, although with higher suitability in southern Australia. Highest stability with changing climate was between 30°S and 30°N. The areas present high agreement among diverse climate models as regards distributional potential in the future, but differed in anticipating potential for distribution in North and Central Africa, southern Asia, central USA, and southeastern Europe. Highest disparity in model predictions across representative concentration pathways (RCPs) was in Saudi Arabia and Europe. The model predictions allow anticipation of changing distributional potential of the species in coming decades.


PLOS Neglected Tropical Diseases | 2014

Mapping the Potential Risk of Mycetoma Infection in Sudan and South Sudan Using Ecological Niche Modeling

Abdallah M. Samy; Wendy W. J. van de Sande; Ahmed H. Fahal; A. Townsend Peterson

In 2013, the World Health Organization (WHO) recognized mycetoma as one of the neglected tropical conditions due to the efforts of the mycetoma consortium. This same consortium formulated knowledge gaps that require further research. One of these gaps was that very few data are available on the epidemiology and transmission cycle of the causative agents. Previous work suggested a soil-borne or Acacia thorn-prick-mediated origin of mycetoma infections, but no studies have investigated effects of soil type and Acacia geographic distribution on mycetoma case distributions. Here, we map risk of mycetoma infection across Sudan and South Sudan using ecological niche modeling (ENM). For this study, records of mycetoma cases were obtained from the scientific literature and GIDEON; Acacia records were obtained from the Global Biodiversity Information Facility. We developed ENMs based on digital GIS data layers summarizing soil characteristics, land-surface temperature, and greenness indices to provide a rich picture of environmental variation across Sudan and South Sudan. ENMs were calibrated in known endemic districts and transferred countrywide; model results suggested that risk is greatest in an east-west belt across central Sudan. Visualizing ENMs in environmental dimensions, mycetoma occurs under diverse environmental conditions. We compared niches of mycetoma and Acacia trees, and could not reject the null hypothesis of niche similarity. This study revealed contributions of different environmental factors to mycetoma infection risk, identified suitable environments and regions for transmission, signaled a potential mycetoma-Acacia association, and provided steps towards a robust risk map for the disease.


Revista Da Sociedade Brasileira De Medicina Tropical | 2014

Leishmaniasis transmission: distribution and coarse-resolution ecology of two vectors and two parasites in Egypt

Abdallah M. Samy; Lindsay P. Campbell; A. Townsend Peterson

INTRODUCTION In past decades, leishmaniasis burden has been low across Egypt; however, changing environment and land use has placed several parts of the country at risk. As a consequence, leishmaniasis has become a particularly difficult health problem, both for local inhabitants and for multinational military personnel. METHODS To evaluate coarse-resolution aspects of the ecology of leishmaniasis transmission, collection records for sandflies and Leishmania species were obtained from diverse sources. To characterize environmental variation across the country, we used multitemporal Land Surface Temperature (LST) and Normalized Difference Vegetation Index (NDVI) data from the Moderate Resolution Imaging Spectroradiometer (MODIS) for 2005-2011. Ecological niche models were generated using MaxEnt, and results were analyzed using background similarity tests to assess whether associations among vectors and parasites (i.e., niche similarity) can be detected across broad geographic regions. RESULTS We found niche similarity only between one vector species and its corresponding parasite species (i.e., Phlebotomus papatasi with Leishmania major), suggesting that geographic ranges of zoonotic cutaneous leishmaniasis and its potential vector may overlap, but under distinct environmental associations. Other associations (e.g., P. sergenti with L. major) were not supported. Mapping suitable areas for each species suggested that northeastern Egypt is particularly at risk because both parasites have potential to circulate. CONCLUSIONS Ecological niche modeling approaches can be used as a first-pass assessment of vector-parasite interactions, offering useful insights into constraints on the geography of transmission patterns of leishmaniasis.


Memorias Do Instituto Oswaldo Cruz | 2010

Bionomics of phlebotomine sand flies (Diptera: Psychodidae) in the province of Al-Baha, Saudi Arabia.

Said Abdallah Doha; Abdallah M. Samy

The bionomics of phlebotomine sand flies (Diptera: Psychodidae) were studied for two successive years (January 1996-December 1997) at 12 collecting stations representing six sectors of the province of Al-Baha, Saudi Arabia. The predominant species was Phlebotomus bergeroti (41.7%), followed by lesser numbers of Phlebotomus sergenti (11%), Phlebotomus arabicus (10.6%), Sergentomyia tiberiadis (10.5%), Phlebotomus papatasi (10.2%), Sergentomyia antennata (9.6%), Phlebotomus alexandri (3%), Phlebotomus orientalis (2.3%) and Sergentomyia clydei (1.1%). The distribution of the collected species including species that are elsewhere known to act as vectors of human cutaneous leishmaniasis were distributed across different altitudes in Al-Baha. P. bergeroti, P. papatasi and P. arabicus were more abundant indoors; however, P. sergenti was more abundant outdoors. Sand fly populations exhibited three patterns of seasonal abundance in terms of their monthly activity. P. bergeroti, P. sergenti and P. arabicus were found to be naturally infected with Leishmania-like flagellates at an infection rate of 0.2%.


Acta Tropica | 2016

Geographic potential of disease caused by Ebola and Marburg viruses in Africa.

A. Townsend Peterson; Abdallah M. Samy

Filoviruses represent a significant public health threat worldwide. West Africa recently experienced the largest-scale and most complex filovirus outbreak yet known, which underlines the need for a predictive understanding of the geographic distribution and potential for transmission to humans of these viruses. Here, we used ecological niche modeling techniques to understand the relationship between known filovirus occurrences and environmental characteristics. Our study derived a picture of the potential transmission geography of Ebola virus species and Marburg, paired with views of the spatial uncertainty associated with model-to-model variation in our predictions. We found that filovirus species have diverged ecologically, but only three species are sufficiently well known that models could be developed with significant predictive power. We quantified uncertainty in predictions, assessed potential for outbreaks outside of known transmission areas, and highlighted the Ethiopian Highlands and scattered areas across East Africa as additional potentially unrecognized transmission areas.


BMC Research Notes | 2015

MERS-CoV geography and ecology in the Middle East: analyses of reported camel exposures and a preliminary risk map

Tarian Reeves; Abdallah M. Samy; A. Townsend Peterson

BackgroundMiddle Eastern respiratory syndrome coronavirus (MERS-CoV) has spread rapidly across much of the Middle East, but no quantitative mapping of transmission risk has been developed to date. Moreover, details of the transmission cycle of the virus remain unclear, particularly regarding the role of camels as a reservoir host for human infections.MethodsWe present a first analysis of the environmental circumstances under which MERS-CoV cases have occurred in the Middle East, covering all case occurrences through May 2015, using ecological niche modeling approaches to map transmission risk. We compare the environmental breadth of conditions under which cases have reported camel contacts with that of the broader population of all cases, to assess whether camel-associated cases occur under a more restricted set of environmental circumstances.ResultsWe documented geographic and environmental distributions of MERS-CoV cases across the Middle East, and offer preliminary mapping of transmission risk. We confirm the idea that climatic dimensions of camel-associated cases are more constrained and less variable than the broader suite of case occurrences; hence, camel exposure may be a key limiting element in MERS-CoV transmission.ConclusionThis study offers a first detailed geographic and environmental analysis of MERS-CoV distributions across the Middle East. Results indicated that camel-exposed cases occur under a narrower suite of environmental conditions than non-camel-exposed cases, suggesting perhaps a key role for camels in the transmission of the disease, and perhaps a narrower area of risk for ‘primary,’ camel-derived cases of MERS.


PLOS ONE | 2016

Climate Change Influences on the Global Potential Distribution of Bluetongue Virus

Abdallah M. Samy; A. Townsend Peterson

The geographic distribution of arboviruses has received considerable attention after several dramatic emergence events around the world. Bluetongue virus (BTV) is classified among category “A” diseases notifiable to the World Organization of Animal Health (OIE), and is transmitted among ruminants by biting midges of the genus Culicoides. Here, we developed a comprehensive occurrence data set to map the current distribution, estimate the ecological niche, and explore the future potential distribution of BTV globally using ecological niche modeling and based on diverse future climate scenarios from general circulation models (GCMs) for four representative concentration pathways (RCPs). The broad ecological niche and potential geographic distribution of BTV under present-day conditions reflected the disease’s current distribution across the world in tropical, subtropical, and temperate regions. All model predictions were significantly better than random expectations. As a further evaluation of model robustness, we compared our model predictions to 331 independent records from most recent outbreaks from the Food and Agriculture Organization Emergency Prevention System for Transboundary Animal and Plant Pests and Diseases Information System (EMPRES-i); all were successfully anticipated by the BTV model. Finally, we tested ecological niche similarity among possible vectors and BTV, and could not reject hypotheses of niche similarity. Under future-climate conditions, the potential distribution of BTV was predicted to broaden, especially in central Africa, United States, and western Russia.


PLOS Neglected Tropical Diseases | 2016

Coarse-resolution Ecology of Etiological Agent, Vector, and Reservoirs of Zoonotic Cutaneous Leishmaniasis in Libya

Abdallah M. Samy; Badereddin B. Annajar; Mostafa Ramadhan Dokhan; Samia Boussaa; A. Townsend Peterson

Abstract Cutaneous leishmaniasis ranks among the tropical diseases least known and most neglected in Libya. World Health Organization reports recognized associations of Phlebotomus papatasi, Psammomys obesus, and Meriones spp., with transmission of zoonotic cutaneous leishmaniasis (ZCL; caused by Leishmania major) across Libya. Here, we map risk of ZCL infection based on occurrence records of L. major, P. papatasi, and four potential animal reservoirs (Meriones libycus, Meriones shawi, Psammomys obesus, and Gerbillus gerbillus). Ecological niche models identified limited risk areas for ZCL across the northern coast of the country; most species associated with ZCL transmission were confined to this same region, but some had ranges extending to central Libya. All ENM predictions were significant based on partial ROC tests. As a further evaluation of L. major ENM predictions, we compared predictions with 98 additional independent records provided by the Libyan National Centre for Disease Control (NCDC); all of these records fell inside the belt predicted as suitable for ZCL. We tested ecological niche similarity among vector, parasite, and reservoir species and could not reject any null hypotheses of niche similarity. Finally, we tested among possible combinations of vector and reservoir that could predict all recent human ZCL cases reported by NCDC; only three combinations could anticipate the distribution of human cases across the country.


Memorias Do Instituto Oswaldo Cruz | 2014

Ecology of cutaneous leishmaniasis in Sinai: linking parasites, vectors and hosts

Abdallah M. Samy; Said Abdallah Doha; Mohamed A. Kenawy

Cutaneous leishmaniasis (CL) is a neglected clinical form of public health importance that is quite prevalent in the northern and eastern parts of Egypt. A comprehensive study over seven years (January 2005-December 2011) was conducted to track CL transmission with respect to both sandfly vectors and animal reservoirs. The study identified six sandfly species collected from different districts in North Sinai: Phlebotomus papatasi, Phlebotomus kazeruni, Phlebotomus sergenti, Phlebotomus alexandri, Sergentomyia antennata and Sergentomyia clydei. Leishmania (-)-like flagellates were identified in 15 P. papatasi individuals (0.5% of 3,008 dissected females). Rodent populations were sampled in the same districts where sandflies were collected and eight species were identified: Rattus norvegicus (n = 39), Rattus rattus frugivorous (n = 13), Rattus rattus alexandrinus (n = 4), Gerbillus pyramidum floweri (n = 38), Gerbillus andersoni (n = 28), Mus musculus (n = 5), Meriones sacramenti (n = 22) and Meriones crassus (n = 10). Thirty-two rodents were found to be positive for Leishmania infection (20.12% of 159 examined rodents). Only Leishmania major was isolated and identified in 100% of the parasite samples. The diversity of both the vector and rodent populations was examined using diversity indices and clustering approaches.

Collaboration


Dive into the Abdallah M. Samy's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge