Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Abdel-Satar Arafa is active.

Publication


Featured researches published by Abdel-Satar Arafa.


Archives of Virology | 2012

Evolution of highly pathogenic avian influenza H5N1 viruses in Egypt indicating progressive adaptation

Abdel-Satar Arafa; David L. Suarez; S. G. Kholosy; Mohamed K. Hassan; S. Nasef; Abdullah Selim; Gwenaelle Dauphin; M. Kim; J. Yilma; David E. Swayne; Mona M. Aly

Highly pathogenic avian influenza (HPAI) virus of the H5N1 subtype was first diagnosed in poultry in Egypt in 2006, and since then the disease became enzootic in poultry throughout the country, affecting the poultry industry and village poultry as well as infecting humans. Vaccination has been used as a part of the control strategy to help to control the disease. Epidemiological data with sequence analysis of H5N1 viruses is important to link the mechanism of virus evolution in Egypt. This study describes the evolutionary pattern of Egyptian H5N1 viruses based on molecular characterization for the isolates collected from commercial poultry farms and village poultry from 2006 to 2011. Genetic analysis of the hemagglutinin (HA) gene was done by sequencing of the full-length H5 gene. The epidemiological pattern of disease outbreaks in Egyptian poultry farms seems to be seasonal with no specific geographic distribution across the country. The molecular epidemiological data revealed that there are two major groups of viruses: the classic group of subclade 2.2.1 and a variant group of 2.2.1.1. The classic group is prevailing mainly in village poultry and had fewer mutations compared to the originally introduced virus in 2006. Since 2009, this group has started to be transmitted back to commercial sectors. The variant group emerged by late 2007, was prevalent mainly in vaccinated commercial poultry, mutated continuously at a higher rate until 2010, and started to decline in 2011. Genetic analysis of the neuraminidase (NA) gene and the other six internal genes indicates a grouping of the Egyptian viruses similar to that obtained using the HA gene, with no obvious reassortments. The results of this study indicate that HPAI-H5N1 viruses are progressively evolving and adapting in Egypt and continue to acquire new mutations every season.


Virology Journal | 2013

Surveillance on A/H5N1 virus in domestic poultry and wild birds in Egypt.

Elham F. El-Zoghby; Mona M. Aly; Soad A. Nasef; Mohamed K. Hassan; Abdel-Satar Arafa; Abdullah Selim; Shereen G Kholousy; Walid H. Kilany; Marwa Safwat; E. M. Abdelwhab; Hafez M. Hafez

BackgroundThe endemic H5N1 high pathogenicity avian influenza virus (A/H5N1) in poultry in Egypt continues to cause heavy losses in poultry and poses a significant threat to human health.MethodsHere we describe results of A/H5N1 surveillance in domestic poultry in 2009 and wild birds in 2009–2010. Tracheal and cloacal swabs were collected from domestic poultry from 22024 commercial farms, 1435 backyards and 944 live bird markets (LBMs) as well as from 1297 wild birds representing 28 different types of migratory birds. Viral RNA was extracted from a mix of tracheal and cloacal swabs media. Matrix gene of avian influenza type A virus was detected using specific real-time reverse-transcription polymerase chain reaction (RT-qPCR) and positive samples were tested by RT-qPCR for simultaneous detection of the H5 and N1 genes.ResultsIn this surveillance, A/H5N1 was detected from 0.1% (n = 23/) of examined commercial poultry farms, 10.5% (n = 151) of backyard birds and 11.4% (n = 108) of LBMs but no wild bird tested positive for A/H5N1. The virus was detected from domestic poultry year-round with higher incidence in the warmer months of summer and spring particularly in backyard birds. Outbreaks were recorded mostly in Lower Egypt where 95.7% (n = 22), 68.9% (n = 104) and 52.8% (n = 57) of positive commercial farms, backyards and LBMs were detected, respectively. Higher prevalence (56%, n = 85) was reported in backyards that had mixed chickens and waterfowl together in the same vicinity and LBMs that had waterfowl (76%, n = 82).ConclusionOur findings indicated broad circulation of the endemic A/H5N1 among poultry in 2009 in Egypt. In addition, the epidemiology of A/H5N1 has changed over time with outbreaks occurring in the warmer months of the year. Backyard waterfowl may play a role as a reservoir and/or source of A/H5N1 particularly in LBMs. The virus has been established in poultry in the Nile Delta where major metropolitan areas, dense human population and poultry stocks are concentrated. Continuous surveillance, tracing the source of live birds in the markets and integration of multifaceted strategies and global collaboration are needed to control the spread of the virus in Egypt.


Archives of Virology | 2012

Distribution of avian influenza H5N1 viral RNA in tissues of AI-vaccinated and unvaccinated contact chickens after experimental infection

Mohamed K. Hassan; Walid H. Kilany; E.M. Abdelwhab; Abdel-Satar Arafa; Abdullah Selim; Ahmed Samy; M. Samir; Yvon Le Brun; Yilma Jobre; Mona M. Aly

Avian influenza due to highly pathogenic avian influenza (HPAIV) H5N1 virus is not a food-borne illness but a serious panzootic disease with the potential to be pandemic. In this study, broiler chickens were vaccinated with commercial H5N1 or H5N2 inactivated vaccines prior to being challenged with an HPAIV H5N1 (clade 2.2.1 classic) virus. Challenged and non-challenged vaccinated chickens were kept together, and unvaccinated chickens served as contact groups. Post-challenge samples from skin and edible internal organs were collected from dead and sacrificed (after a 14-day observation period) birds and tested using qRT-PCR for virus detection and quantification. H5N1 vaccine protected chickens against morbidity, mortality and transmission. Virus RNA was not detected in the meat or edible organs of chickens vaccinated with H5N1 vaccine. Conversely, H5N2 vaccine did not confer clinical protection, and a significant virus load was detected in the meat and internal organs. Phylogenetic analysis showed that the H5N1 virus vaccine and challenge virus strains are closely related. The results of the present study strongly suggest a need for proper selection of vaccines and their routine evaluation against newly emergent field viruses. These actions will help to reduce human exposure to HPAIV H5N1 virus from both infected live birds and slaughtered poultry. In addition, rigorous preventive measures should be put in place in order to minimize the public-health risks of avian influenza at the human-animal interface.


Emerging Infectious Diseases | 2017

Highly Pathogenic Avian Influenza Virus (H5N8) Clade 2.3.4.4 Infection in Migratory Birds, Egypt

Abdullah Selim; Ahmed M. Erfan; Naglaa Hagag; Ali Zanaty; Abdel-Hafez Samir; Mohamed Samy; Ahmed Abdelhalim; Abdel-Satar Arafa; Mohamed A. Soliman; Momtaz Shaheen; Essam M. Ibraheem; Ibrahim Mahrous; Mohamed K. Hassan; Mahmoud M. Naguib

We isolated highly pathogenic avian influenza virus (H5N8) of clade 2.3.4.4 from the common coot (Fulica atra) in Egypt, documenting its introduction into Africa through migratory birds. This virus has a close genetic relationship with subtype H5N8 viruses circulating in Europe. Enhanced surveillance to detect newly emerging viruses is warranted.


Research in Veterinary Science | 2017

Molecular and antigenic traits on hemagglutinin gene of avian influenza H9N2 viruses: Evidence of a new escape mutant in Egypt adapted in quails

Amany Adel; Abdel-Satar Arafa; Hussein A. Hussein; Ahmed A. El-Sanousi

The LPAI viruses of H9N2 subtype became widely distributed in Middle Eastern countries, causing great economic losses in poultry industry especially when complicated with other pathogens. The H9N2 viruses in Egypt have a wide spread nature since its first occurrence in 2011. In this study, we collected cloacal and tracheal samples from 19 flocks for detection and propagation of H9N2 virus using real-time RT-PCR and egg inoculation. We studied the molecular evolution of the Hemagglutinin gene of H9N2 viruses by full HA gene sequencing, then the antigenic characterization was implemented using the cross HI assay and analyzed using 3D Bioinformatics cartography software. The phylogenetic analysis of the HA gene of Egyptian H9N2 viruses clearly points out the presence of only one group (Egy/G1) of originally introduced viruses in 2011 related to the G1 lineage within group B, with the presence of multiple minor clusters includes viruses from 2011 to 2015. However, a new variant (Egy/G1var) cluster was detected in quails since 2012. Genetically, Egy/G1var viruses characterized by presence of 20 amino acid substitutions within and adjacent to the antigenic sites in comparison to other Egyptian viruses. In addition, two glycosylation sites at amino acid residues 127 and 189 were determined in close to the receptor binding and antigenic sites. The antigenic analysis based on 3D antigenic mapping showed that the Egy/G1var cluster was clearly distinct from the original Egy/G1 viruses. In conclusion, Egy/G1var is shown to be a new escape mutant variant cluster with an adaptive evolution in quails.


Archives of Virology | 2016

The sequence of the full spike S1 glycoprotein of infectious bronchitis virus circulating in Egypt reveals evidence of intra-genotypic recombination.

Ali Zanaty; Mahmoud M. Naguib; Mohamed El-Husseiny; Wesam Mady; Naglaa Hagag; Abdel-Satar Arafa

Infectious bronchitis virus (IBV) continues to circulate worldwide, with a significant impact on the poultry industry and affecting both vaccinated and unvaccinated flocks. Several studies have focused on the hypervariable regions (HVRs) of the spike gene (S1); however, genetic and bioinformatics studies of the whole S1 gene are limited. In this study, the whole S1 gene of five Egyptian IBVs was genetically analyzed. Phylogenetic analysis revealed that the Egyptian IBVs are clustered within two distinct groups: the classic group resembling the GI-1 genotype (vaccine strains) and the variant group (field strains) of the GI-23 genotype. The variant genotype was divided into two distinct subgroups (Egy/var I and Egy/var II) resembling the Israeli variants IS/1494 and IS885 strain, respectively. Significant amino acid sequence differences between the two subgroups, especially in the epitope sites, were identified. A deletion at position 63 and an I69A/S substitution mutation associated with virus tropism were detected in the receptor-binding sites. The deduced amino acid sequence of HVRs of the variant subgroups indicated different genetic features in comparison to the classic vaccine group (H120 lineage). The Egyptian variant IBVs also contained additional N-glycosylation sites compared to the classical viruses. Recombination analysis gave evidence for distinct patterns of origin by recombination throughout the S1 gene, suggesting that the recent virus IBV-EG/1586CV-2015 emerged as a recombinant of two viruses from the variant groups Egy/var I and Egy/var II, providing another example of intra-genotypic recombination among IBVs and the first example of recombination within the GI-23 genotype. Our data suggest that both mutation and recombination may be contributing to the emergence of IBV variants. Moreover, we found that the commercially used vaccines are genotypically distant from the circulating field strains. Hence, continuous follow-up of the current vaccine strategy is highly recommended for better control and prevention of infectious bronchitis virus in the poultry sector in Egypt.


Journal of Virological Methods | 2015

Development of reverse transcription recombinase polymerase amplification assay for avian influenza H5N1 HA gene detection.

Nahed Yehia; Abdel-Satar Arafa; Ahmed Abd El Wahed; Ahmed A. El-Sanousi; Manfred Weidmann; Mohamed A. Shalaby

The 2006 outbreaks of H5N1 avian influenza in Egypt interrupted poultry production and caused staggering economic damage. In addition, H5N1 avian influenza viruses represent a significant threat to public health. Therefore, the rapid detection of H5 viruses is very important in order to control the disease. In this study, a qualitative reverse transcription recombinase polymerase amplification (RT-RPA) assay for the detection of hemagglutinin gene of H5 subtype influenza viruses was developed. The results were compared to the real-time reverse transcription polymerase chain reaction (RT-PCR). An in vitro transcribed RNA standard of 970 nucleotides of the hemagglutinin gene was developed and used to determine the assay sensitivity. The developed H5 RT-RPA assay was able to detect one RNA molecule within 7 min, while in real-time RT-PCR, at least 90 min was required. H5 RT-RPA assay did not detect nucleic acid extracted from H5 negative samples or from other pathogens producing respiratory manifestation in poultry. The clinical performance of the H5 RT-RPA assay was tested in 30 samples collected between 2014 and 2015; the sensitivity of H5 RT-RPA and real-time RT-PCR was 100%. In conclusion, H5 RT-RPA was faster than real-time RT-PCR and easily operable in a portable device. Moreover, it had an equivalent sensitivity and specificity.


Journal of General Virology | 2017

Heterologous post-infection immunity against Egyptian avian influenza virus (AIV) H9N2 modulates the course of subsequent infection by highly pathogenic AIV H5N1, but vaccination immunity does not

Mahmoud M. Naguib; Christian Grund; Abdel-Satar Arafa; E. M. Abdelwhab; Martin Beer; Timm C. Harder

In Egypt, zoonotic A/goose/Guangdong/1/96 (gs/GD-like) highly pathogenic avian influenza virus (HPAIV) H5N1 of clade 2.2.1.2 is entrenched in poultry populations and has co-circulated with low-pathogenic avian influenza virus H9N2 of the G1 lineage since 2010. Here, the impact of H9N2 infection or vaccination on the course of consecutive infection with a lethal Egyptian HPAIV H5N1 is studied. Three-week-old chickens were infected with H9N2 or vaccinated with inactivated H9N2 or H5N1 antigens and challenged three weeks later by an HPAIV H5N1. Interestingly, pre-infection of chickens with H9N2 decreased the oral excretion of H5N1 to levels that were comparable to those of H5N1-immunized chickens, but vaccination with inactivated H9N2 did not. H9N2 pre-infection modulated but did not conceal clinical disease by HPAIV H5N1. By contrast, homologous H5 vaccination abolished clinical syndromic surveillance, although vaccinated clinical healthy birds were capable of spreading the virus.


Infection, Genetics and Evolution | 2018

Multiple introductions of reassorted highly pathogenic avian influenza viruses (H5N8) clade 2.3.4.4b causing outbreaks in wild birds and poultry in Egypt

Nahed Yehia; Mahmoud M. Naguib; Ruiyun Li; Naglaa Hagag; Mohamed El-Husseiny; Zainab Mosaad; Ahmed Nour; Neveen Rabea; Wafaa M. Hasan; Mohamed K. Hassan; Timm C. Harder; Abdel-Satar Arafa

Recently, an increased incidence of outbreaks of highly pathogenic avian influenza (HPAI) H5N8 in poultry linked to infected migratory birds has been reported from different European, Asian and African countries. In Egypt, incursion of HPAI H5N8 virus of clade 2.3.4.4b has been recently registered. Full genomic characterization of 3 virus isolates from wild birds and poultry (backyard and commercial farm sectors) showed high nucleotide similarity among the HA, NA, M, and NS gene segments of the three Egyptian HPAI H5N8 viruses, indicating that they are descendants of a common ancestral virus. However, the analyzed Egyptian H5N8 viruses revealed distinct genotypes involving different origins of the PB2, PB1, PA and/or NP segments. In genotype-1 represented by strain A/common-coot/Egypt/CA285/2016 the PB2 and NP segments showed closest relationship to H5N6 and H6N2 viruses, recently detected in Italy. The second is replacement of PB1 and NP genes A novel reassortant, represented by strain A/duck/Egypt/SS19/2017, showed an exchange of PB1 and NP genes which might have originated from H6N8 or H1N1 and H6N2 viruses. Finally, replacement of PA and NP genes characterized strain A/duck/Egypt/F446/2017. Bayesian phylogeographic analyses revealed that Egyptian H5N8 viruses are highly likely derived from Russian 2016 HPAI H5N8 virus (A/great_crested_grebe/Uvs-Nuur_Lake/341/2016 (H5N8)) and the reassortment likely occurred before incursion to Egypt.


World journal of virology | 2016

Genotyping and pathotyping of diversified strains of infectious bronchitis viruses circulating in Egypt

Ali Zanaty; Abdel-Satar Arafa; Naglaa Hagag; Magdy F. El-Kady

AIM To characterize the circulating infectious bronchitis virus (IBV) strains in Egypt depending on the sequence of the spike-1 (S1) gene [hypervariable region-3 (HVR-3)] and to study the pathotypic features of these strains. METHODS In this work, twenty flocks were sampled for IBV detection using RRT-PCR and isolation of IBV in specific pathogen free (SPF) chicks during the period from 2010 to 2015. Partial sequencing and phylogenetic analysis of 400 bp representing the HVR-3 of the S1 gene was conducted. Pathotypic characterization of one selected virus from each group (Egy/Var-I, Egy/Var-II and classic) was evaluated in one day old SPF chicks. The chicks were divided into 4 groups 10 birds each including the negative control group. Birds were inoculated at one day by intranasal instillation of 10(5)EID50/100 μL of IBV viruses [IBV-EG/1212B-2012 (Egy/Var-II), IBV/EG/IBV1-2011 (Egy/Var-I) and IBV-EG/11539F-2011 (classic)], while the remaining negative control group was kept uninfected. The birds were observed for clinical signs, gross lesions and virus pathogenicity. The real-time rRT-PCR test was performed for virus detection in the tissues. Histopathological examinations were evaluated in both trachea and kidneys. RESULTS The results revealed that these viruses were separated into two distinct groups; variant (GI-23) and classic (GI-1), where 16 viruses belonged to a variant group, including 2 subdivisions [Egy/Var-I (6 isolates) and Egy/Var-II (10 isolates)] and 4 viruses clustered to the classic group (Mass-like). IBV isolates in the variant group were grouped with other IBV strains from the Middle East. The variant subgroup (Egy/Var-I) was likely resembling the original Egyptian variant strain (Egypt/Beni-Suif/01) and the Israeli strain (IS/1494/2006). The second subgroup (Egy/Var-II) included the viruses circulating in the Middle East (Ck/EG/BSU-2 and Ck/EG/BSU-3/2011) and the Israeli strain (IS/885/00). The two variant subgroups (Egy/Var-I and Egy/Var-II) found to be highly pathogenic to SPF chicks with mortalities up to 50% than those of the classic group which was of low virulence (10% mortality). Pathogenicity indices were 25 (Egy/Var-II), 24 (Egy/Var-I) and 8 (classic); with clinical scores 3, 2 and 1 respectively. CONCLUSION These findings indicated that the recent circulating Egyptian IBVs have multiple heterogeneous origins in marked diversifying nature of their spread, with high pathotype in specific pathogen free chicks.

Collaboration


Dive into the Abdel-Satar Arafa's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mahmoud M. Naguib

Friedrich Loeffler Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Timm C. Harder

Friedrich Loeffler Institute

View shared research outputs
Top Co-Authors

Avatar

E. M. Abdelwhab

Free University of Berlin

View shared research outputs
Top Co-Authors

Avatar

Hafez M. Hafez

Humboldt University of Berlin

View shared research outputs
Top Co-Authors

Avatar

Mona M. Aly

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Martin Beer

Friedrich Loeffler Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge