Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Abdelali Jalil is active.

Publication


Featured researches published by Abdelali Jalil.


Journal of Cell Science | 2005

The apoptosis/autophagy paradox: autophagic vacuolization before apoptotic death

Rosa-Ana Gonzalez-Polo; Patricia Boya; Anne-Laure Pauleau; Abdelali Jalil; Nathanael Larochette; Sylvie Souquere; Eeva-Liisa Eskelinen; Gérard Pierron; Paul Saftig; Guido Kroemer

Autophagic cell death is morphologically characterized by an accumulation of autophagic vacuoles. Here, we show that inactivation of LAMP2 by RNA interference or by homologous recombination leads to autophagic vacuolization in nutrient-depleted cells. Cells that lack LAMP2 expression showed an enhanced accumulation of vacuoles carrying the marker LC3, yet a decreased colocalization of LC3 and lysosomes, suggesting that the fusion between autophagic vacuoles and lysosomes was inhibited. While a fraction of mitochondria from starved LAMP2-expressing cells colocalized with lysosomal markers, within autophagolysosomes, no such colocalization was found on removal of LAMP2 from the experimental system. Of note, LAMP1 depletion had no such effects and did not aggravate the phenotype induced by LAMP2-specific small interfering RNA. Serum and amino acid-starved LAMP2-negative cells exhibited an accumulation of autophagic vacuoles and then succumbed to cell death with hallmarks of apoptosis such as loss of the mitochondrial transmembrane potential, caspase activation and chromatin condensation. While caspase inhibition retarded cell death, it had no protective effect on mitochondria. Stabilization of mitochondria by overexpression of Bcl-2 or the mitochondrion-targeted cytomegalovirus protein vMIA, however, blocked all signs of apoptosis. Neither caspase inhibition nor mitochondrial stabilization antagonized autophagic vacuolization in LAMP2-deficient cells. Altogether, these data indicate that accumulation of autophagic vacuoles can precede apoptotic cell death. These findings argue against the clear-cut distinction between type 1 (apoptotic) and type 2 (autophagic) cell death.


Blood | 2008

Megakaryocyte endomitosis is a failure of late cytokinesis related to defects in the contractile ring and Rho/Rock signaling

Larissa Lordier; Abdelali Jalil; Frédéric Auradé; Frédéric Larbret; Jérôme Larghero; Najet Debili; William Vainchenker; Yunhua Chang

Megakaryocyte (MK) is the naturally polyploid cell that gives rise to platelets. Polyploidization occurs by endomitosis, which was a process considered to be an incomplete mitosis aborted in anaphase. Here, we used time-lapse confocal video microscopy to visualize the endomitotic process of primary human megakaryocytes. Our results show that the switch from mitosis to endomitosis corresponds to a late failure of cytokinesis accompanied by a backward movement of the 2 daughter cells. No abnormality was observed in the central spindle of endomitotic MKs. A furrow formation was present, but the contractile ring was abnormal because accumulation of nonmuscle myosin IIA was lacking. In addition, a defect in cell elongation was observed in dipolar endomitotic MKs during telophase. RhoA and F-actin were partially concentrated at the site of furrowing. Inhibition of the Rho/Rock pathway caused the disappearance of F-actin at midzone and increased MK ploidy level. This inhibition was associated with a more pronounced defect in furrow formation as well as in spindle elongation. Our results suggest that the late failure of cytokinesis responsible for the endomitotic process is related to a partial defect in the Rho/Rock pathway activation.


Journal of Biological Chemistry | 2004

An anti-apoptotic viral protein that recruits Bax to mitochondria.

Delphine Poncet; Nathanael Larochette; Anne-Laure Pauleau; Patricia Boya; Abdelali Jalil; Pierre-Francois Cartron; Francois Vallette; Céline Schnebelen; Laura M. Bartle; Anna Skaletskaya; David Boutolleau; Jean-Claude Martinou; Victor S. Goldmacher; Guido Kroemer; Naoufal Zamzami

The viral mitochondria-localized inhibitor of apoptosis (vMIA), encoded by the UL37 gene of human cytomegalovirus, inhibits apoptosis-associated mitochondrial membrane permeabilization by a mechanism different from that of Bcl-2. Here we show that vMIA induces several changes in Bax that resemble those found in apoptotic cells yet take place in unstimulated, non-apoptotic vMIA-expressing cells. These changes include the constitutive localization of Bax at mitochondria, where it associates tightly with the mitochondrial membrane, forming high molecular weight aggregates that contain vMIA. vMIA recruits Bax to mitochondria but delays relocation of caspase-8-activated truncated Bid-green fluorescent protein (GFP) (t-Bid-GFP) to mitochondria. The ability of vMIA and its deletion mutants to associate with Bax and to induce relocation of Bax to mitochondria correlates with their anti-apoptotic activity and with their ability to suppress mitochondrial membrane permeabilization. Taken together, our data indicate that vMIA blocks apoptosis via its interaction with Bax. vMIA neutralizes Bax by recruiting it to mitochondria and “freezing” its pro-apoptotic activity. These data unravel a novel strategy of subverting an intrinsic pathway of apoptotic signaling.


Journal of Immunology | 2009

The cooperative induction of hypoxia-inducible factor-1 alpha and STAT3 during hypoxia induced an impairment of tumor susceptibility to CTL-mediated cell lysis.

Muhammad Zaeem Noman; Stéphanie Buart; Jos Van Pelt; Catherine Richon; Meriem Hasmim; Nathalie Leleu; Wictoria Maria Suchorska; Abdelali Jalil; Yann Lécluse; Faten El Hage; Massimo Giuliani; Christophe Pichon; Bruno Azzarone; Nathalie Mazure; Pedro Romero; Fathia Mami-Chouaib; Salem Chouaib

Hypoxia is an essential component of tumor microenvironment. In this study, we investigated the influence of hypoxia (1% PO2) on CTL-mediated tumor cell lysis. We demonstrate that exposure of target tumor cells to hypoxia has an inhibitory effect on the CTL clone (Heu171)-induced autologous target cell lysis. Such inhibition correlates with hypoxia-inducible factor-1α (HIF-1α) induction but is not associated with an alteration of CTL reactivity as revealed by granzyme B polarization or morphological change. Western blot analysis indicates that although hypoxia had no effect on p53 accumulation, it induced the phosphorylation of STAT3 in tumor cells by a mechanism at least in part involving vascular endothelial growth factor secretion. We additionally show that a simultaneous nuclear translocation of HIF-1α and phospho-STAT3 was observed. Interestingly, gene silencing of STAT3 by small interfering RNA resulted in HIF-1α inhibition and a significant restoration of target cell susceptibility to CTL-induced killing under hypoxic conditions by a mechanism involving at least in part down-regulation of AKT phosphorylation. Moreover, knockdown of HIF-1α resulted in the restoration of target cell lysis under hypoxic conditions. This was further supported by DNA microarray analysis where STAT3 inhibition resulted in a partly reversal of the hypoxia-induced gene expression profile. The present study demonstrates that the concomitant hypoxic induction of phopho-STAT3 and HIF-1α are functionally linked to the alteration of non-small cell lung carcinoma target susceptibility to CTL-mediated killing. Considering the eminent functions of STAT3 and HIF-1α in the tumor microenvironment, their targeting may represent novel strategies for immunotherapeutic intervention.


Cancer Research | 2004

Prion protein prevents human breast carcinoma cell line from tumor necrosis factor α-induced cell death

Maryam Diarra-Mehrpour; Samuel Arrabal; Abdelali Jalil; Xavier Pinson; Catherine Gaudin; Geneviève Piétu; Amandine Pitaval; Hugues Ripoche; Marc Eloit; Dominique Dormont; Salem Chouaib

To define genetic determinants of tumor cell resistance to the cytotoxic action of tumor necrosis factor α (TNF), we have applied cDNA microarrays to a human breast carcinoma TNF-sensitive MCF7 cell line and its established TNF-resistant clone. Of a total of 5760 samples of cDNA examined, 3.6% were found to be differentially expressed in TNF-resistant 1001 cells as compared with TNF-sensitive MCF7 cells. On the basis of available literature data, the striking finding is the association of some differentially expressed genes involved in the phosphatidylinositol-3-kinase/Akt signaling pathway. More notably, we found that the PRNP gene coding for the cellular prion protein (PrPc), was 17-fold overexpressed in the 1001 cell line as compared with the MCF7 cell line. This differential expression was confirmed at the cell surface by immunostaining that indicated that PrPc is overexpressed at both mRNA and protein levels in the TNF-resistant derivative. Using recombinant adenoviruses expressing the human PrPc, our data demonstrate that PrPc overexpression converted TNF-sensitive MCF7 cells into TNF-resistant cells, at least in part, by a mechanism involving alteration of cytochrome c release from mitochondria and nuclear condensation.


Nature Communications | 2012

RUNX1-induced silencing of non-muscle myosin heavy chain IIB contributes to megakaryocyte polyploidization

Larissa Lordier; Dominique Bluteau; Abdelali Jalil; Céline Legrand; Jiajia Pan; Philippe Rameau; Dima Jouni; Olivier Bluteau; Thomas Mercher; Catherine Léon; Christian Gachet; Najet Debili; William Vainchenker; Hana Raslova; Yunhua Chang

Megakaryocytes are unique mammalian cells that undergo polyploidization (endomitosis) during differentiation, leading to an increase in cell size and protein production that precedes platelet production. Recent evidence demonstrates that endomitosis is a consequence of a late failure in cytokinesis associated with a contractile ring defect. Here we show that the non-muscle myosin IIB heavy chain (MYH10) is expressed in immature megakaryocytes and specifically localizes in the contractile ring. MYH10 downmodulation by short hairpin RNA increases polyploidization by inhibiting the return of 4N cells to 2N, but other regulators, such as of the G1/S transition, might regulate further polyploidization of the 4N cells. Conversely, re-expression of MYH10 in the megakaryocytes prevents polyploidization and the transition of 2N to 4N cells. During polyploidization, MYH10 expression is repressed by the major megakaryocyte transcription factor RUNX1. Thus, RUNX1-mediated silencing of MYH10 is required for the switch from mitosis to endomitosis, linking polyploidization with megakaryocyte differentiation.


Journal of Cell Biology | 2006

Cytopathic effects of the cytomegalovirus-encoded apoptosis inhibitory protein vMIA

Delphine Poncet; Anne-Laure Pauleau; Angelo Vozza; Sebastian R. Scholz; Morgane Le Bras; Jean-Jacques Brière; Abdelali Jalil; Ronan Le Moigne; Catherine Brenner; Gabriele Hahn; Ilka Wittig; Hermann Schägger; Christophe Lemaire; Katiuscia Bianchi; Sylvie Souquere; Gérard Pierron; Pierre Rustin; Victor S. Goldmacher; Rosario Rizzuto; Ferdinando Palmieri; Guido Kroemer

Replication of human cytomegalovirus (CMV) requires the expression of the viral mitochondria–localized inhibitor of apoptosis (vMIA). vMIA inhibits apoptosis by recruiting Bax to mitochondria, resulting in its neutralization. We show that vMIA decreases cell size, reduces actin polymerization, and induces cell rounding. As compared with vMIA-expressing CMV, vMIA-deficient CMV, which replicates in fibroblasts expressing the adenoviral apoptosis suppressor E1B19K, induces less cytopathic effects. These vMIA effects can be separated from its cell death–inhibitory function because vMIA modulates cellular morphology in Bax-deficient cells. Expression of vMIA coincided with a reduction in the cellular adenosine triphosphate (ATP) level. vMIA selectively inhibited one component of the ATP synthasome, namely, the mitochondrial phosphate carrier. Exposure of cells to inhibitors of oxidative phosphorylation produced similar effects, such as an ATP level reduced by 30%, smaller cell size, and deficient actin polymerization. Similarly, knockdown of the phosphate carrier reduced cell size. Our data suggest that the cytopathic effect of CMV can be explained by vMIA effects on mitochondrial bioenergetics.


Cancer Research | 2009

Intratumoral induction of CD103 triggers tumor-specific CTL function and CCR5-dependent T-cell retention.

Katarzyna Franciszkiewicz; Audrey Le Floc'h; Abdelali Jalil; Frédéric Vigant; Thomas Robert; Isabelle Vergnon; Andrzej Mackiewicz; Karim Benihoud; Pierre Validire; Salem Chouaib; Christophe Combadière; Fathia Mami-Chouaib

We have reported previously that the interaction of alpha(E)(CD103)beta(7) integrin, expressed on a CD8(+) tumor-infiltrating lymphocyte (TIL) clone but not on a peripheral blood lymphocyte (PBL) counterpart, with the epithelial marker E-cadherin on human lung tumor cells plays a crucial role in T-cell receptor-mediated cytotoxicity. We show here that both TIL and PBL clones are able to migrate toward autologous tumor cells and that chemokine receptor CCR5 is involved in this process. Adoptive transfer of the PBL clone in the cognate tumor engrafted in nonobese diabetic/severe combined immunodeficient mice and subsequent coengagement of T-cell receptor and transforming growth factor-beta1 receptor triggers CD103 expression on T-cell surface resulting in strong potentiation of antitumor lytic function. Moreover, interaction of alpha(E)beta(7) integrin with E-cadherin, but not lymphocyte function-associated antigen-1 with intercellular adhesion molecule-1, promotes CCR5 recruitment at the immunologic synapse formed between TIL and tumor cells, leading to inhibition of T-cell sensitivity to CCL5 chemotactic gradient. These results provide evidence for a role of tumor microenvironment, namely MHC class I-restricted antigen presentation and transforming growth factor-beta1 secretion, in regulating the effector phase of tumor-specific CTL response. They also suggest a unique role of CD103 in T-cell retention at the tumor site by a CCR5-dependent mechanism.


Proceedings of the National Academy of Sciences of the United States of America | 2006

Identification of target actin content and polymerization status as a mechanism of tumor resistance after cytolytic T lymphocyte pressure

Soraya Abouzahr; Georges Bismuth; Catherine Gaudin; Oliver Caroll; Peter Van Endert; Abdelali Jalil; Jean Dausset; Isabelle Vergnon; Catherine Richon; Audrey Kauffmann; Jérôme Galon; Graça Raposo; Fathia Mami-Chouaib; Salem Chouaib

To investigate tumor resistance to T cell lysis, a resistant variant was selected after specific cytolytic T lymphocytes (CTL) selection pressure. Although the resistant variant triggered perforin and granzyme B transcription in specific CTLs, as well as their degranulation, it exhibited a dramatic resistance to cytotoxic T cell killing. It also displayed strong morphological changes with alterations of the actin cytoskeleton. Electron microscopy analysis revealed a loosen interaction between CTLs and the resistant variant despite the formation of apparently normal conjugates. Transcriptional profiling identified a gene expression signature that distinguished sensitive from resistant tumor targets. More notably, we found that actin-related genes ephrin-A1 and scinderin were overexpressed in resistant target. Silencing of these genes using RNA interference resulted in a restoration of normal cell morphology and a significant attenuation of variant resistance to CTL killing. Our present study shows that a shift in cytoskeletal organization can be used, by tumor cells, as a strategy to promote their resistance after CTL selection pressure.


Cancer Research | 2008

ICAM-1 Has a Critical Role in the Regulation of Metastatic Melanoma Tumor Susceptibility to CTL Lysis by Interfering with PI3K/AKT Pathway

Ahmed Hamaï; Franck Meslin; Houssem Benlalam; Abdelali Jalil; Maryam Mehrpour; Florence Faure; Yann Lécluse; Philipe Vielh; Marie-Françoise Avril; Caroline Robert; Salem Chouaib

Human primary melanoma cells (T1) were found to be more susceptible to lysis by a Melan-A/MART-1-specific CTL clone (LT12) than their metastatic derivative (G1). We show that this differential susceptibility does not involve antigen presentation by target cells, synapse formation between the metastatic target and CTL clone, or subsequent granzyme B (GrB) polarization. Although PI-9, an inhibitor of GrB, was found to be overexpressed in metastatic G1 cells, knockdown of the PI-9 gene did not result in the attenuation of G1 resistance to CTL-induced killing. Interestingly, we show that whereas T1 cells express high levels of intercellular adhesion molecule-1 (ICAM-1), a dramatically reduced expression was noted on G1 cells. We also showed that sorted ICAM-1+ G1 cells were highly sensitive to CTL-induced lysis compared with ICAM-1- G1 cells. Furthermore, incubation of metastatic G1 cells with IFN-gamma resulted in the induction of ICAM-1 and the potentiation of their susceptibility to lysis by LT12. More importantly, we found that the level of ICAM-1 expression by melanoma cells correlated with decreased PTEN activity. ICAM-1 knockdown in T1 cells resulted in increased phosphorylation of PTEN and the subsequent activation of AKT. We have additionally shown that inhibition of the phosphatidylinositol (3,4,5)-triphosphate kinase (PI3K)/AKT pathway by the specific inhibitor wortmannin induced a significant potentiation of susceptibility of G1 and ICAM-1 small interfering RNA-treated T1 cells to CTL-induced lysis. The present study shows that a shift in ICAM-1 expression, which was associated with an activation of the PI3K/AKT pathway, can be used by metastatic melanoma cells to escape CTL-mediated killing.

Collaboration


Dive into the Abdelali Jalil's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yunhua Chang

Institut Gustave Roussy

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ahmed Hamaï

Institut Gustave Roussy

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge