Abdelkrim Azzouz
Université du Québec à Montréal
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Abdelkrim Azzouz.
Journal of Colloid and Interface Science | 2013
Saadia Nousir; Nicoleta Platon; Kamel Ghomari; Andrei-Sergiu Sergentu; Tze Chieh Shiao; Grégory Hersant; Jean-Yves Bergeron; René Roy; Abdelkrim Azzouz
Polyalcohol incorporation was found to enhance the hydrophilic character of montmorillonite and its affinity towards carbon dioxide. CO2 adsorption occurred in both dry and humid conditions, but higher amounts were retained in the presence of moisture. This suggests two adsorption pathways: 1. direct OH-CO2 interaction and 2. more predominantly via indirect ternary OH-H2O-CO2 interactions. The retained amounts of water and CO2 increased almost proportionally with the number of OH groups incorporated, thus providing clear evidence that these groups act as adsorption sites. The improvement of the CO2 retention capacity (CRC) appears to be also due to the enhancement of the hydrophilic character of the adsorbent. The CRC value was found to strongly depend on the operating conditions. The major part of the retained CO2 was desorbed at 60-70°C from hydrated matrices, but at 20-50°C from dry adsorbents. CO2 can be easily released even at room temperature through forced convection under a gas stream, or under static conditions in dry and CO2-free media, e.g. in the presence of KOH pellets. It results that the CO2 retention also involves physical interactions. These results open new prospects for the reversible capture of other gases on low-cost hybrid adsorbents without thermal regeneration.
Chemsuschem | 2015
Abdelkrim Azzouz; Saadia Nousir; Nabil Bouazizi; René Roy
Stabilization of metal nanoparticles (MNPs) without re-aggregation is a major challenge. An unprecedented strategy is developed for achieving high dispersion of copper(0) or palladium(0) on montmorillonite-supported diethanolamine or thioglycerol. This results in novel metal-inorganic-organic matrices (MIOM) that readily capture hydrogen at ambient conditions, with easy release under air stream. Hydrogen retention appears to involve mainly physical interactions, slightly stronger on thioglycerol-based MIOM (S-MIOM). Thermal enhancement of desorption suggests also a contribution of chemical interactions. The increase of hydrogen uptake with prolonged contact times arises from diffusion hindrance, which appears to be beneficial by favoring hydrogen entrapment. Even with compact structures, MIOMs act as efficient sorbents with much higher efficiency factor (1.14-1.17 mmol H 2 m(-2)) than many other sophisticated adsorbents reported in the literature. This opens new prospects for hydrogen storage and potential applications in microfluidic hydrogenation reactions.
Journal of Hazardous Materials | 2015
Dariush Shahidi; Amira Moheb; Rabah Abbas; Safa Larouk; René Roy; Abdelkrim Azzouz
The catalytic activity and selectivity of montmorillonite exchanged with Na(+), Fe(2+), Co(2+), Ni(2+) and Cu(2+) cations were comparatively investigated in the ozonation of sulfamethoxazole (SMX). Chlorobenzene, benzoic acid, 4-nitrobenzoic acid, 3-hydroxybenzaldehyde, 4-nitrophenol and phenol were used as probe molecules having structural similarity with SMX oxidation intermediates. UV-vis spectrophometry and chemical oxygen demand (COD) measurements showed that Fe(II)-Mt and, to a lesser extent, Co(II)-Mt produce total mineralization of all organic substrates in less than 40 min. Combined HPLC-mass spectrometry revealed a reverse proportionality between the degradation time and molecular size of the organic substrates. Oxalic acid was recognized as a common bottleneck in the ozonation of any organic substrates. Ozonation initially obeyed a first order kinetics, but adsorption took place after 3-5 min, inducing changes in the mechanisms pathways. These findings may be useful for tailoring optimum oxidative treatment of waters without accumulation of hazardous derivatives.
Research on Chemical Intermediates | 2017
Imene Terrab; Rachida Ouargli; Bouhadjar Boukoussa; Kamel Ghomari; Rachida Hamacha; René Roy; Abdelkrim Azzouz; Abdelkader Bengueddach
Three mesoporous silica, SBA-16, SBA-15 and MCM-41, with different structures and porosities were synthesized via a hydrothermal method and their interactions with carbon dioxide (CO2) were investigated through thermal programmed desorption (TPD) and differential scanning calorimetry. TPD measurements provided precise assessments of the intrinsic affinity towards CO2, without the influence of moisture. All silica materials were found to exhibit intrinsic affinity towards carbon dioxide, but the surface basicity, expressed in terms of retained CO2 amount, is markedly influenced by increases in pore size and framework structures. SBA-15 displayed the highest CRC values, explained in terms of larger pore size, lower numbers of acidic out-of plane Si–OH and higher numbers of much less acidic in-plane silanols. These findings provide valuable information for a better understanding of the role of the silica structure in the intrinsic basicity, prior to further modifications for improving the affinity towards CO2 or merely for catalysis purposes involving CO2 as reagents, intermediates or products.
Journal of Radioanalytical and Nuclear Chemistry | 2014
Mohamed Amine Didi; Didier Villemin; Omar Abderrahim; Abdelkrim Azzouz
In this paper, extractants that have the potential to be sustainably regenerated, are proposed for thorium(IV) removal from nitrate aqueous phases. These extractants are oleic (OA), palmitic (PA) and lauric (LA) acids. The advantages of using these acids are their sustainability, their biocompatibility and their non-toxicity, this makes these simpler and greener compared to other extractants (organophosphorus, azote derivatives, macrocyclic crown, etc…) used for metal extraction. These acids were applied as chelating agent for Th(IV) liquid–liquid extraction. The extractions were carried out in chloroform as an organic phase through the formation of thorium–OA, thorium–PA and thorium–LA complexes. The synergistic extraction of Th(IV) with these extractants in the presence of tributhylphosphine (TBP) has been investigated. The effect of different variables, such as time contact, pH of the aqueous phase, concentration of fatty acid, TBP addition on fatty acids, ionic strength and temperature, is reported. The results showed that the extraction kinetics using LA and OA were fast than with PA. The KNO3 addition does not seem to highly influence the extraction yield, and no important synergy effect was noticed in the presence of TPB. Thermodynamic data for Th(IV) solvent extraction are also reported in this paper.
Journal of Colloid and Interface Science | 2017
N. Bouazizi; T. Boudharaa; R. Bargougui; Salah Ammar; F. Le Derf; Abdelkrim Azzouz
In this paper, a new synthetic strategy towards functionalized ZnO-HMD@ZnO-Fe/Cu core-shell using sol-gel process modified by chemical grafting of hexamethylenediamine (HMD) on the core and in-situ dispersion of Cu0/Fe0 as metallic nanoparticles (M-NPs) on the shell. The as-prepared core-shell materials were fully characterized by transmission electron microscopy, X-ray powder diffractometry, diffuse reflectance and FT-IR spectrophotometery, photoluminescence, and complexes impedance spectroscopy measurements. The XRD patterns agreed with that of the ZnO typical wurtzite structure, indicating good crystallinity of ZnO-HMD@ZnO-Fe/Cu, with the presence of Fe0 and Cu0 phases. Hexamethylenediamine grafting and M-NPs insertion were highly activated and enhanced the core and shell interface by the physiochemical interaction. After functionalization, luminescence intensities and electrical properties of both core and core-shell nanoparticles are improved, indicating the effects of the surface groups on the charge transfer of ZnO-HMD@ZnO-Fe/Cu. The hydrogen capacity retention was depended strongly on the composition and structure of the obtained core-shell. Iron/Copper-loaded ZnO-HMD@ZnO materials exhibited the highest capacity for hydrogen storage. The excellent stability and performance of the ZnO-HMD@ZnO-Fe/Cu core-shell make it an efficient candidate for hydrogen storage.
RSC Advances | 2016
N. Bouazizi; R. Bargougui; A. Benghnia; J. Vieillard; S. Ammar; Abdelkrim Azzouz
Tin oxide (SnO2) was synthesized via a co-precipitation method and activated by 1,5 diaminonaphthalene (DAN) grafting and molybdenum nanoparticles (Mo-NPs) incorporation. The resulting SnO2–DAN–Mo nanocomposites were characterized by X-ray diffraction, transmission electron microscopy, diffuse reflectance and FTIR spectrophotometry, photoluminescence spectroscopy and complex impedance spectroscopy measurements. The surface-grafting of DAN within mesopores was confirmed by Fourier-transform infrared spectroscopy. The XRD and TEM studies showed a dominant tetragonal structure. The dispersion of fine Mo-NPs on the surface of the matrices, produced slight structural compaction. The crystallite size decreased with the insertion of DAN and Mo-NPs. The photoluminescence study revealed the presence of oxygen vacancies and that the PL intensity strongly depends on DAN grafting and Mo-NPs insertion. In addition, both the incorporation of Mo-NPs and DAN grafting appear to be responsible for the changes in the conductance and relaxation phenomenon. The effects of surface groups of SnO2–DAN–Mo and charge transfer were found to be almost proportional to the capacitance. The above properties make these nanocomposites efficient electrode materials for green energy storage.
Journal of Hazardous Materials | 2019
Farida Boudissa; Diana Mirilà; Vasilica-Alisa Arus; Thizizi Terkmani; Sirène Semaan; Mélanie Proulx; Ileana-Denisa Nistor; René Roy; Abdelkrim Azzouz
Catalytic ozonation of Methylene Blue, Methyl Green, Methyl Orange and Methyl-thymol Blue was investigated in the presence of ion-exchanged montmorillonite (NaMt and Fe(II)Mt), crude bentonite and acid-activated counterparts. An original approach never tackled so far consisted in correlating the basicity and hydrophilic character to the dye-catalyst interactions occurring on the catalyst surface. This was achieved through CO2 and water thermal programmed desorption. Kinetics study revealed that ozonation starts in the bulk solution, and dye adsorption turns out to be an essential requirement for high catalytic effectiveness. On NaMt, dye molecules appear to adsorb mainly via hydrophobic interaction. On Fe(II)Mt, the contributions of hydrophobic interaction, cation-exchange and Fe2+ mobility to the catalytic activity prevail. Acid activated clay catalysts exhibited lowest hydrophilic character favoring adsorption through organophilic interaction and affording thorough and fast dye mineralization. This was explained in terms of increased number of silanols and -Si-O-Si- groups. For all catalysts, short ozonation of all dye molecules resulted in similar end-chain products, which were totally eliminated after prolonged reaction times. This result is of great importance because it provides valuable theoretical findings that allow envisaging total mineralization of organic molecules by recyclable metal-free clay catalysts.
Molecules | 2018
Celia Sehad; Tze Chieh Shiao; Lamyaa M. Sallam; Abdelkrim Azzouz; René Roy
An efficient study of carbohydrate-protein interactions was achieved using multivalent glycodendrimer library. Different dendrimers with varied peripheral sugar densities and linkers provided an arsenal of potential novel therapeutic agents that could be useful for better specific action and greater binding affinities against their cognate protein receptors. Highly effective click chemistry represents the basic method used for the synthesis of mannosylated dendrimers. To this end, we used propargylated scaffolds of varying sugar densities ranging from 2 to 18 for the attachment of azido mannopyranoside derivatives using copper catalyzed click cycloaddition. Mannopyranosides with short and pegylated aglycones were used to evaluate their effects on the kinetics of binding. The mannosylated dendrons were built using varied scaffolds toward the accelerated and combined “onion peel” strategy These carbohydrates have been designed to fight E. coli urinary infections, by inhibiting the formation of bacterial biofilms, thus neutralizing the adhesion of FimH type 1 lectin present at the tip of their fimbriae against the natural multiantennary oligomannosides of uroplakin 1a receptors expressed on uroepithelial tissues. Preliminary DLS studies of the mannosylated dendrimers to cross- link the leguminous lectin Con A used as a model showed their high potency as candidates to fight the E. coli adhesion and biofilm formation.
Applied Mechanics and Materials | 2013
Marius Gheorghe Marian; Tudor Sajin; Abdelkrim Azzouz
This paper refers to experimental study of a new type of micro hydropower plant for energy conversion of low river water heads into mechanical work by imposing gravitational vortex flow in spiral form through a vertical conical channel. In this vortex, at different heights of the conical channel, are positioned rotor blades of the turbine with different values of specific speed. The characteristics of the gravitational vortex of water flow through the conical channel, the speed and the power characteristics of the micro hydropower plant were investigated and attempts to efficiency modeling were performed.