Abdellah Belmaaza
Université de Montréal
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Abdellah Belmaaza.
Cancer Research | 2008
Norman Chan; Marianne Koritzinsky; Helen Zhao; Ranjit S. Bindra; Peter M. Glazer; Simon N. Powell; Abdellah Belmaaza; Brad Wouters; Robert G. Bristow
Hypoxic and/or anoxic tumor cells can have increased rates of mutagenesis and altered DNA repair protein expression. Yet very little is known regarding the functional consequences of any hypoxia-induced changes in the expression of proteins involved in DNA double-strand break repair. We have developed a unique hypoxic model system using H1299 cells expressing an integrated direct repeat green fluorescent protein (DR-GFP) homologous recombination (HR) reporter system to study HR under prolonged chronic hypoxia (up to 72 h under 0.2% O(2)) without bias from altered proliferation, cell cycle checkpoint activation, or severe cell toxicity. We observed decreased expression of HR proteins due to a novel mechanism involving decreased HR protein synthesis. Error-free HR was suppressed 3-fold under 0.2% O(2) as measured by the DR-GFP reporter system. This decrease in functional HR resulted in increased sensitivity to the DNA cross-linking agents mitomycin C and cisplatin but not to the microtubule-interfering agent, paclitaxel. Chronically hypoxic H1299 cells that had decreased functional HR were relatively radiosensitive [oxygen enhancement ratio (OER), 1.37] when compared with acutely hypoxic or anoxic cells (OER, 1.96-2.61). Using CAPAN1 cells isogenic for BRCA2 and siRNA to RAD51, we confirmed that the hypoxia-induced radiosensitivity was due to decreased HR capacity. Persistent down-regulation of HR function by the tumor microenvironment could result in low-fidelity DNA repair and have significant implications for response to therapy and genetic instability in human cancers.
Mutation Research-dna Repair | 1994
Abdellah Belmaaza; Pierre Chartrand
Two classes of homologous recombination mechanism for repair of double-strand breaks (DSBs) have been described in eukaryotes so far. One is conservative and has been explained by the double-strand break repair model (Szostak et al., 1983), whereas the other one is non-conservative and has been explained by the single-strand annealing model (Lin et al., 1984). Here, we will review data supporting the existence of another homologous recombination mechanism for double-strand break repair. We will present the one-sided invasion model that we have proposed to explain this mechanism and discuss its potential implication in various homologous recombination events.
Cancer Research | 2005
Isabelle Cousineau; Christine Abaji; Abdellah Belmaaza
The breast/ovarian cancer susceptibility proteins BRCA1 and BRCA2 maintain genome stability, at least in part, through a functional role in DNA damage repair. They both colocalize with RAD51 at sites of DNA damage/replication and activate RAD51-mediated homologous recombination repair of DNA double-strand breaks (DSB). Whereas BRCA2 interacts directly with and regulates RAD51, the role of BRCA1 in this process is unclear. However, BRCA1 may regulate RAD51 in response to DNA damage or through its ability to interact with and regulate MRE11/RAD50/NBS1 (MRN) during the processing of DSBs into single-strand DNA (ssDNA) ends, prerequisite substrates for RAD51, or both. To test these hypotheses, we measured the effect of BRCA1 on the competition between RAD51-mediated homologous recombination (gene conversion and crossover) versus RAD51-independent homologous recombination [single-strand annealing (SSA)] for ssDNA at a site-specific chromosomal DSB within a DNA repeat, a substrate for both homologous recombination pathways. Expression of wild-type BRCA1 in BRCA1-deficient human recombination reporter cell lines promoted both gene conversion and SSA but greatly enhanced gene conversion. In addition, BRCA1 also suppressed both spontaneous gene conversion and deletion events, which can arise from either crossover or sister chromatid replication slippage (SCRS), a RAD51-independent process. BRCA1 does not seem to block crossover. From these results, we conclude that (a) BRCA1 regulates RAD51 function in response to the type of DNA damage and (b) BRCA1 suppresses SCRS, suggesting a role for this protein in sister chromatid cohesion/alignment. Loss of such control in response to estrogen-induced DNA damage after BRCA1 inactivation may be a key initial event that triggers genome instability and carcinogenesis.
Cancer Research | 2005
Christine Abaji; Isabelle Cousineau; Abdellah Belmaaza
BRCA2 has been implicated in the maintenance of genome stability and RAD51-mediated homologous recombination repair of chromosomal double-strand breaks (DSBs), but its role in these processes is unclear. To gain more insight into its role in homologous recombination, we expressed wild-type BRCA2 in the well-characterized BRCA2-deficient human cell line CAPAN-1 containing, as homologous recombination substrates, either direct or inverted repeats of two inactive marker genes. Whereas direct repeats monitor a mixture of RAD51-dependent and RAD51-independent homologous recombination events, inverted repeats distinguish between these events by reporting RAD51-dependent homologous recombination, gene conversion, and crossover events only. At either repeats, BRCA2 decreases the rate and frequency of spontaneous homologous recombination, but following chromosomal DSBs, BRCA2 increases the frequency of homologous recombination. At direct repeats, BRCA2 suppresses both spontaneous gene conversion and deletions, which can arise either from crossover or RAD51-independent sister chromatid replication slippage (SCRS), but following chromosomal DSBs, BRCA2 highly promotes gene conversion with little effect on deletions. At inverted repeats, spontaneous or DSB-induced crossover events were scarce and BRCA2 does not suppress their formation. From these results, we conclude that (i) BRCA2 regulates RAD51 recombination in response to the type of DNA damage and (ii) BRCA2 suppresses SCRS, suggesting a role for BRCA2 in sister chromatids cohesion and/or alignment. Loss of such control in response to estrogen-induced DNA damage after BRCA2 inactivation may be a key initial event triggering genome instability and carcinogenesis.
Cell Cycle | 2007
Isabelle Cousineau; Abdellah Belmaaza
Humans heterozygous for BRCA1 mutations have a high risk of losing the remaining wild-type BRCA1 allele and developing breast/ovarian cancer, but a molecular basis for this has not yet been determined. It is thought that heterozygosity status — reduced wild-type BRCA1 protein dosage (haploinsufficiency) and/or the presence of a mutant BRCA1 protein — may affect BRCA1 functions and heighten the risk of cancer promoting mutations. BRCA1 maintains genome stability, at least in part, by regulating homologous recombination according to the type of DNA damage. To investigate whether this BRCA1 function is affected by heterozygosity status, we employed, as recombination reporters, human breast cancer MCF-7 cells known to have a single wild-type BRCA1 allele and reduced BRCA1 protein dosage. These cells revealed: 1) a spontaneous hyper-recombination phenotype; 2) reduced efficiency in homologous recombination repair of DNA double-strand breaks (DSBs); and 3) sensitivity to the DSB-inducing chemotherapeutic agent mitomycin C. Correction of BRCA1 protein dosage to the wild-type level reversed all these phenotypes, whereas physiological expression of the cancer-eliciting BRCA1 5382insC mutant allele had no effect on either phenotype. These findings implicate BRCA1 C-terminal domain in recombination control, and indicate that BRCA1 haploinsufficiency alone, which is also a feature of sporadic breast/ovarian cancer, is sufficient to compromise genome stability by triggering spontaneous recombination events that are likely to account for the loss of the remaining wild-type BRCA1 allele and increased cancer risk. Our observations may also have implications for the medical management of cancer patients and cancer prevention.
Molecular Genetics and Genomics | 2011
Isabelle Cousineau; Abdellah Belmaaza
EMSY links the BRCA2 pathway to sporadic breast/ovarian cancer. It encodes a nuclear protein that binds to the BRCA2 N-terminal domain implicated in chromatin/transcription regulation, but when sporadically amplified/overexpressed, increased EMSY level represses BRCA2 transactivation potential and induces chromosomal instability, mimicking the activity of BRCA2 mutations in the development of hereditary breast/ovarian cancer. In addition to chromatin/transcription regulation, EMSY may also play a role in the DNA-damage response, suggested by its ability to localize at chromatin sites of DNA damage/repair. This implies that EMSY overexpression may also repress BRCA2 in DNA-damage replication/checkpoint and recombination/repair, coordinated processes that also require its interacting proteins: PALB2, the partner and localizer of BRCA2; RPA, replication/checkpoint protein A; and RAD51, the inseparable recombination/repair enzyme. Here, using a well-characterized recombination/repair assay system, we demonstrate that a slight increase in EMSY level can indeed repress these two processes independently of transcriptional interference/repression. Since EMSY, RPA and PALB2 all bind to the same BRCA2 region, these findings further support a scenario wherein: (a) EMSY amplification may mimic BRCA2 deficiency, at least by overriding RPA and PALB2, crippling the BRCA2/RAD51 complex at DNA-damage and replication/transcription sites; and (b) BRCA2/RAD51 may coordinate these processes by employing at least EMSY, PALB2 and RPA. We extensively discuss the molecular details of how this can happen to ascertain its implications for a novel recombination mechanism apparently conceived as checkpoint rather than a DNA repair system for cell division, survival, death, and human diseases, including the tissue specificity of cancer predisposition, which may renew our thinking about targeted therapy and prevention.
Molecular Genetics and Genomics | 1997
J.-F. Villemure; Abdellah Belmaaza; Pierre Chartrand
Abstract We have investigated the role of DNA ends during gap repair by homologous recombination. Mouse cells were transfected with a gapped plasmid carrying distinctive ends: on one side mouse LINE-1 repetitive sequences (LlMd-A2), and on the other rat LINE-1 sequences (LlRn-3). The gap could be repaired by homologous recombination with endogenous mouse genomic LINE-1 elements, which are on average 95% and 85% homologous to LlMd-A2 and LlRn-3 ends, respectively. Both LlMd-A2 and LlRn-3 ends were found to initiate gap repair with equal efficiency. However, there were two types of gap repair products – precise and imprecise – the occurrence of which appears to depend on which end had been used for initiation and thus which end was left available for subsequent steps in recombination. These results, together with sequence analysis of recombinants obtained with plasmids having either mouse or rat LINE-1 sequences flanking the gap, strongly suggest that the two DNA ends played different roles in recombinational gap repair. One end was used to initiate the gap repair process, while the other end was involved at later steps, in the resolution of the recombination event.
Somatic Cell and Molecular Genetics | 1997
Manon Richard; Nadine Gusew; Abdellah Belmaaza; Pierre Chartrand
Studies on homologous recombination in mammalian cells between an exogenous DNA molecule containing a double-strand break and a homologous genomic sequence have indicated that there were at least two distinct types of homologous recombination processes, one that involved the formation of two homologous junctions and another that involved the formation of one homologous junction and one illegitimate junction. Both types of events are produced in gene targeting experiments. We have proposed a model to account for the later process called one-sided invasion. One-sided invasion has now been reported in numerous species belonging to different phyla and appears to be a universal mechanism. It has also been observed in normal human germ cells. The role of one-side invasion is still unknown. Using a recombination assay between LINE-1 elements from the human genome and exogenous LINE-1 sequences, we have characterized the process of homologous junction formation in one-sided invasion. We found that at each of the homologous junctions, variable lengths of the vector L1 sequences had been replaced by genomic L1 sequences. We also found a homologous junction that involved three partners, suggesting that the homologous end could be released and become available for a second round of interaction.
Somatic Cell and Molecular Genetics | 1999
Josée-France Villemure; Abdellah Belmaaza
We have examined the effect of sequence divergence on the efficiency of recombination in mismatch repair proficient and deficient cell lines by using an exon-switch based assay that involves introns as recombination substrates. Sequence divergence of 15% decreased spontaneous recombination by six-fold in mismatch repair proficient cells but only three- and two- fold in human cells with defects in mismatch repair genes MLH1 and MSH2, respectively. The decrease in recombination efficiency in mismatch repair proficient background does not seem to be due to the production of rearranged recombination intermediates since these were readily detectable in the assay system we used. In contrast, the efficiency of double-strand break-induced recombination was not affected by sequence divergence in mismatch repair proficient or deficient background. These results indicate that sequence divergence and mismatch repair block intiation of spontaneous recombination but not recombinational repair of double-strand breaks. The differential sensitivity of these two processes may be required for genome stability.
Cell Cycle | 2005
Jean-François Lemelin; Christine Abaji; Isabelle Cousineau; Abdellah Belmaaza
In addition to its well established role in the maintenance of genome integrity by regulating transcription of genes involved in cell cycle arrest and programmed cell death, the tumour suppressor p53 has also been shown to inhibit spontaneous chromosomal homologous recombination (HR) between adjacent transcription units, raising the possibility that p53 may prevent chromosomal rearrangements by suppressing HR between repetitive DNA elements (ectopic HR). Consistent with its role in the maintenance of genome integrity is that p53 does not suppress HR between homologous chromosomes (allelic HR) or identical sister chromatids, raising the question of how p53 discriminates between ectopic and allelic HR events. Here, we report that disruption of human p53 by the viral oncoprotein HPV16-E6 does not result in increased rates of chromosomal HR between adjacent DNA repeats in a transcriptional interference-free assay system in which a HR reporter gene can escape transcription repression. These results argue against a direct role for p53 in the regulation of HR mechanisms, imply that HR assay systems may be important determinants of the outcome, and suggest that p53 may suppress ectopic HR through its known ability to repress transcription and alter chromatin structure.