Abdelmajid Noubhani
University of Bordeaux
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Abdelmajid Noubhani.
Angewandte Chemie | 2016
Jan Stanek; Loren B. Andreas; Kristaps Jaudzems; Diane Cala; D. Lalli; Andrea Bertarello; Tobias Schubeis; Inara Akopjana; Svetlana Kotelovica; Kaspars Tars; Andrea Pica; Serena Leone; Delia Picone; Zhi-Qiang Xu; Nicholas E. Dixon; Denis Martinez; Mélanie Berbon; Nadia El Mammeri; Abdelmajid Noubhani; Sven J. Saupe; Birgit Habenstein; Antoine Loquet; Guido Pintacuda
We demonstrate sensitive detection of alpha protons of fully protonated proteins by solid-state NMR spectroscopy with 100-111 kHz magic-angle spinning (MAS). The excellent resolution in the Cα-Hα plane is demonstrated for 5 proteins, including microcrystals, a sedimented complex, a capsid and amyloid fibrils. A set of 3D spectra based on a Cα-Hα detection block was developed and applied for the sequence-specific backbone and aliphatic side-chain resonance assignment using only 500 μg of sample. These developments accelerate structural studies of biomolecular assemblies available in submilligram quantities without the need of protein deuteration.
Peptides | 2010
Agnès Hocquellet; Benoit Odaert; Charlotte Cabanne; Abdelmajid Noubhani; Wilfrid Dieryck; Gilles Joucla; Caroline Le Sénéchal; Milen Milenkov; Stéphane Chaignepain; Jean-Marie Schmitter; Stéphane Claverol; Xavier Santarelli; Erick J. Dufourc; Marc Bonneu; Bertrand Garbay; Patricia Costaglioli
Liver-expressed antimicrobial peptide 2 (LEAP-2) is a 40-residue cationic peptide originally purified from human blood ultrafiltrate. The native peptide contains two disulfide bonds and is unique regarding its primary structure. Its biological role is not known but a previous study showed that chemically synthesized LEAP-2 exhibited in vitro antimicrobial activities against several Gram-positive bacteria. In order to determine its antimicrobial mode of action, we expressed human recombinant LEAP-2 in Escherichia coli. Circular dichroism spectroscopy and nuclear magnetic resonance analyses showed that the structure of the recombinant peptide was identical to that of the chemically synthesized and oxidized LEAP-2, with two disulfide bonds between Cys residues in relative 1-3 and 2-4 positions. Minimal inhibitory concentration (MIC) of the recombinant human LEAP-2 was determined by a conventional broth dilution assay. It was found to be bactericidal against Bacillus megaterium at a 200microM concentration. Interestingly, the linear LEAP-2 had a greater antimicrobial activity with a MIC value of 12.5microM, which was comparable to that of magainin2. SYTOX Green uptake was used to assess bacterial membrane integrity. Linear LEAP-2 and magainin2 permeabilized B. megaterium membranes with the same efficiency, whereas oxidized LEAP-2 did not induce stain uptake. Binding of the peptides to plasmid DNA was evaluated by gel retardation assays. The DNA-binding efficacy of linear LEAP-2 was three times higher than that of the peptide-containing disulfide bridges. Altogether, these results show that the secondary structure of human LEAP-2 has a profound impact on its antibacterial activity.
Journal of Biotechnology | 2015
Vignesh Narasimhan Janakiraman; Charlotte Cabanne; Wilfrid Dieryck; Agnès Hocquellet; Gilles Joucla; Caroline Le Sénéchal; Stéphane Chaignepain; Patricia Costaglioli; Xavier Santarelli; Bertrand Garbay; Abdelmajid Noubhani
Hepcidin was first identified as an antimicrobial peptide present in human serum and urine. It was later demonstrated that hepcidin is the long-sought hormone that regulates iron homeostasis in mammals. Recombinant human Hepcidin-25 (Hepc25) was expressed in Pichia pastoris using a modified version of the pPICZαA vector. Hepc25 was then purified by a simple two-step chromatographic process to obtain 1.9 mg of soluble recombinant human Hepc25 per liter of culture at 96% purity. The sequence of Hepc25 and the presence of four disulfide bridges were confirmed by mass spectrometry analyses, and the recombinant Hepc25 exhibited antibacterial activity. This protocol of production and purification is the first step toward the production of human Hepc25 at a greater scale.
PLOS ONE | 2017
Amelie Vallet-Courbin; Mélusine Larivière; Agnès Hocquellet; Audrey Hemadou; Sarjapura-Nagaraja Parimala; Jeanny Laroche-Traineau; Xavier Santarelli; Gisèle Clofent-Sanchez; Marie-Josée Jacobin-Valat; Abdelmajid Noubhani
Cells of the innate and adaptive immune system are key factors in the progression of atherosclerotic plaque, leading to plaque instability and rupture, potentially resulting in acute atherothrombotic events such as coronary artery disease, cerebrovascular disease and peripheral arterial disease. Here, we describe the cloning, expression, purification, and immunoreactivity assessment of a recombinant single-chain variable fragment (scFv) derived from a human anti-αIIbβ3 antibody (HuAb) selected to target atheromatous lesions for the presence of platelets. Indeed, platelets within atheroma plaques have been shown to play a role in inflammation, in platelet-leucocyte aggregates and in thrombi formation and might thus be considered relevant biomarkers of atherosclerotic progression. The DNA sequence that encodes the anti-αIIbβ3 TEG4 scFv previously obtained from a phage-display selection on activated platelets, was inserted into the eukaryote vector (pPICZαA) in fusion with a tag sequence encoding 2 cysteines useable for specific probes grafting experiments. The recombinant protein was expressed at high yields in Pichia pastoris (30 mg/L culture). The advantage of P. pastoris as an expression system is the production and secretion of recombinant proteins in the supernatant, ruling out the difficulties encountered when scFv are produced in the cytoplasm of bacteria (low yield, low solubility and reduced affinity). The improved conditions allowed for the recovery of highly purified and biologically active scFv fragments ready to be grafted in a site-directed way to nanoparticles for the imaging of atherosclerotic plaques involving inflammatory processes and thus at high risk of instability.
International Journal of Biological Macromolecules | 2006
Remy Robert; Gisèle Clofent-Sanchez; Agnès Hocquellet; Marie-Josée Jacobin-Valat; Danièle Daret; Abdelmajid Noubhani; Xavier Santarelli
Biotechnology Journal | 2016
Vignesh Narasimhan Janakiraman; Abdelmajid Noubhani; Krishnan Venkataraman; Mookambeswaran A. Vijayalakshmi; Xavier Santarelli
Angewandte Chemie | 2016
Jan Stanek; Loren B. Andreas; Kristaps Jaudzems; Diane Cala; D. Lalli; Andrea Bertarello; Tobias Schubeis; Inara Akopjana; Svetlana Kotelovica; Kaspars Tars; Andrea Pica; Serena Leone; Delia Picone; Zhi-Qiang Xu; Nicholas E. Dixon; Denis Martinez; Mélanie Berbon; Nadia El Mammeri; Abdelmajid Noubhani; Sven J. Saupe; Birgit Habenstein; Antoine Loquet; Guido Pintacuda
Journal of Biomolecular NMR | 2018
James Tolchard; Manoj Pandey; Mélanie Berbon; Abdelmajid Noubhani; Sven J. Saupe; Yusuke Nishiyama; Birgit Habenstein; Antoine Loquet
ENC 2017 - 58th Experimental Nuclear Magnetic Resonance Conference | 2017
Jan Stanek; Loren B. Andreas; Kristaps Jaudzems; Diane Cala-De Paepe; Daniela Lalli; Andrea Bertarello; Tobias Schubeis; I. Akopjana; Svetlana Kotelovica; Kaspars Tars; Andrea Pica; Serena Leone; Delia Picone; Zhi-Qiang Xu; Nicholas E. Dixon; Denis Martinez; Mélanie Berbon; Nadia El Mammeri; Abdelmajid Noubhani; Sven J. Saupe; Birgit Habenstein; Antoine Loquet; G. Pintacuda
publication.editionName | 2016
J. Stanec; Loren B. Andreas; Kristaps Jaudzems; Diane Cala; D. Lalli; Andrea Bertarello; Tobias Schubeis; Inara Akopjana; I. Kotelovica; Kaspars Tars; Andrea Pica; Serena Leone; Delia Picone; Z-Q Xu; Nicholas E. Dixon; D. Matinez; Mélanie Berbon; N. El Mammeri; Abdelmajid Noubhani; Sven J. Saupe; Birgit Habenstein; Antoine Loquet; A. Pintacuda