Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Abderahmane Derouiche is active.

Publication


Featured researches published by Abderahmane Derouiche.


Nucleic Acids Research | 2013

Interaction of bacterial fatty-acid-displaced regulators with DNA is interrupted by tyrosine phosphorylation in the helix-turn-helix domain

Abderahmane Derouiche; Vladimir Bidnenko; Rosa Grenha; Nathalie Pigonneau; Magali Ventroux; Mirita Franz-Wachtel; Sylvie Nessler; Marie Francoise Noirot-Gros; Ivan Mijakovic

Bacteria possess transcription regulators (of the TetR family) specifically dedicated to repressing genes for cytochrome P450, involved in oxidation of polyunsaturated fatty acids. Interaction of these repressors with operator sequences is disrupted in the presence of fatty acids, and they are therefore known as fatty-acid-displaced regulators. Here, we describe a novel mechanism of inactivating the interaction of these proteins with DNA, illustrated by the example of Bacillus subtilis regulator FatR. FatR was found to interact in a two-hybrid assay with TkmA, an activator of the protein-tyrosine kinase PtkA. We show that FatR is phosphorylated specifically at the residue tyrosine 45 in its helix-turn-helix domain by the kinase PtkA. Structural modelling reveals that the hydroxyl group of tyrosine 45 interacts with DNA, and we show that this phosphorylation reduces FatR DNA binding capacity. Point mutants mimicking phosphorylation of FatR in vivo lead to a strong derepression of the fatR operon, indicating that this regulatory mechanism works independently of derepression by polyunsaturated fatty acids. Tyrosine 45 is a highly conserved residue, and PtkA from B. subtilis can phosphorylate FatR homologues from other bacteria. This indicates that phosphorylation of tyrosine 45 may be a general mechanism of switching off bacterial fatty-acid-displaced regulators.


Frontiers in Microbiology | 2014

Protein-tyrosine phosphorylation interaction network in Bacillus subtilis reveals new substrates, kinase activators and kinase cross-talk

Lei Shi; Nathalie Pigeonneau; Magali Ventroux; Abderahmane Derouiche; Vladimir Bidnenko; Ivan Mijakovic; Marie-Françoise Noirot-Gros

Signal transduction in eukaryotes is generally transmitted through phosphorylation cascades that involve a complex interplay of transmembrane receptors, protein kinases, phosphatases and their targets. Our previous work indicated that bacterial protein-tyrosine kinases and phosphatases may exhibit similar properties, since they act on many different substrates. To capture the complexity of this phosphorylation-based network, we performed a comprehensive interactome study focused on the protein-tyrosine kinases and phosphatases in the model bacterium Bacillus subtilis. The resulting network identified many potential new substrates of kinases and phosphatases, some of which were experimentally validated. Our study highlighted the role of tyrosine and serine/threonine kinases and phosphatases in DNA metabolism, transcriptional control and cell division. This interaction network reveals significant crosstalk among different classes of kinases. We found that tyrosine kinases can bind to several modulators, transmembrane or cytosolic, consistent with a branching of signaling pathways. Most particularly, we found that the division site regulator MinD can form a complex with the tyrosine kinase PtkA and modulate its activity in vitro. In vivo, it acts as a scaffold protein which anchors the kinase at the cell pole. This network highlighted a role of tyrosine phosphorylation in the spatial regulation of the Z-ring during cytokinesis.


Microbiology | 2015

Serine/threonine/tyrosine phosphorylation regulates DNA binding of bacterial transcriptional regulators

Aida Kalantari; Abderahmane Derouiche; Lei Shi; Ivan Mijakovic

Reversible phosphorylation of bacterial transcriptional regulators (TRs) belonging to the family of two-component systems (TCSs) is a well-established mechanism for regulating gene expression. Recent evidence points to the fact that reversible phosphorylation of bacterial TRs on other types of residue, i.e. serine, threonine, tyrosine and cysteine, is also quite common. The phosphorylation of the ester type (phospho-serine/threonine/tyrosine) is more stable than the aspartate phosphorylation of TCSs. The kinases which catalyse these phosphorylation events (Hanks-type serine/threonine protein kinases and bacterial protein tyrosine kinases) are also much more promiscuous than the TCS kinases, i.e. each of them can phosphorylate several substrate proteins. As a consequence, the dynamics and topology of the signal transduction networks depending on these kinases differ significantly from the TCSs. Here, we present an overview of different classes of bacterial TR phosphorylated and regulated by serine/threonine and tyrosine kinases. Particular attention is given to examples when serine/threonine and tyrosine kinases interact with TCSs, phosphorylating either the histidine kinases or the response regulators. We argue that these promiscuous kinases connect several signal transduction pathways and serve the role of signal integration.


Current Genetics | 2016

Evolution and tinkering: what do a protein kinase, a transcriptional regulator and chromosome segregation/cell division proteins have in common?

Abderahmane Derouiche; Lei Shi; Aida Kalantari; Ivan Mijakovic

In this study, we focus on functional interactions among multi-domain proteins which share a common evolutionary origin. The examples we develop are four Bacillus subtilis proteins, which all possess an ATP-binding Walker motif: the bacterial tyrosine kinase (BY-kinase) PtkA, the chromosome segregation protein Soj (ParA), the cell division protein MinD and a transcription regulator SalA. These proteins have arisen via duplication of the ancestral ATP-binding domain, which has undergone fusions with other functional domains in the process of divergent evolution. We point out that these four proteins, despite having very different physiological roles, engage in an unusually high number of binary functional interactions. Namely, MinD attracts Soj and PtkA to the cell pole, and in addition, activates the kinase function of PtkA. SalA also activates the kinase function of PtkA, and it gets phosphorylated by PtkA as well. The consequence of this phosphorylation is the activation of SalA as a transcriptional repressor. We hypothesize that these functional interactions remain preserved during divergent evolution and represent a constraint on the process of evolutionary “tinkering”, brought about by fusions of different functional domains.


Molecular Microbiology | 2015

Bacillus subtilisSalA is a phosphorylation-dependent transcription regulator that represses scoC and activates the production of the exoprotease AprE

Abderahmane Derouiche; Lei Shi; Vladimir Bidnenko; Magali Ventroux; Nathalie Pigonneau; Mirita Franz-Wachtel; Aida Kalantari; Sylvie Nessler; Marie-Françoise Noirot-Gros; Ivan Mijakovic

Bacillus subtilis Mrp family protein SalA has been shown to indirectly promote the production of the exoprotease AprE by inhibiting the expression of scoC, which codes for a repressor of aprE. The exact mechanism by which SalA influences scoC expression has not been clarified previously. We demonstrate that SalA possesses a DNA‐binding domain (residues 1–60), which binds to the promoter region of scoC. The binding of SalA to its target DNA depends on the presence of ATP and is stimulated by phosphorylation of SalA at tyrosine 327. The B. subtilis protein‐tyrosine kinase PtkA interacts specifically with the C‐terminal domain of SalA in vivo and in vitro and is responsible for activating its DNA binding via phosphorylation of tyrosine 327. In vivo, a mutant mimicking phosphorylation of SalA (SalA Y327E) exhibited a strong repression of scoC and consequently overproduction of AprE. By contrast, the non‐phosphorylatable SalA Y327F and the ΔptkA exhibited the opposite effect, stronger expression of scoC and lower production of the exoprotease. Interestingly, both SalA and PtkA contain the same ATP‐binding Walker domain and have thus presumably arisen from the common ancestral protein. Their regulatory interplay seems to be conserved in other bacteria.


Frontiers in Microbiology | 2016

Role of Protein Phosphorylation in the Regulation of Cell Cycle and DNA-Related Processes in Bacteria

Transito Garcia-Garcia; Sandrine Poncet; Abderahmane Derouiche; Lei Shi; Ivan Mijakovic; Marie-Françoise Noirot-Gros

In all living organisms, the phosphorylation of proteins modulates various aspects of their functionalities. In eukaryotes, protein phosphorylation plays a key role in cell signaling, gene expression, and differentiation. Protein phosphorylation is also involved in the global control of DNA replication during the cell cycle, as well as in the mechanisms that cope with stress-induced replication blocks. Similar to eukaryotes, bacteria use Hanks-type kinases and phosphatases for signal transduction, and protein phosphorylation is involved in numerous cellular processes. However, it remains unclear whether protein phosphorylation in bacteria can also regulate the activity of proteins involved in DNA-mediated processes such as DNA replication or repair. Accumulating evidence supported by functional and biochemical studies suggests that phospho-regulatory mechanisms also take place during the bacterial cell cycle. Recent phosphoproteomics and interactomics studies identified numerous phosphoproteins involved in various aspect of DNA metabolism strongly supporting the existence of such level of regulation in bacteria. Similar to eukaryotes, bacterial scaffolding-like proteins emerged as platforms for kinase activation and signaling. This review reports the current knowledge on the phosphorylation of proteins involved in the maintenance of genome integrity and the regulation of cell cycle in bacteria that reveals surprising similarities to eukaryotes.


Frontiers in Microbiology | 2017

Low Concentrations of Vitamin C Reduce the Synthesis of Extracellular Polymers and Destabilize Bacterial Biofilms

Santosh Pandit; Vaishnavi Ravikumar; Alyaa M. Abdel-Haleem; Abderahmane Derouiche; Venkata Raghu Mokkapati; Carina Sihlbom; Katsuhiko Mineta; Takashi Gojobori; Xin Gao; Fredrik Westerlund; Ivan Mijakovic

Extracellular polymeric substances (EPS) produced by bacteria form a matrix supporting the complex three-dimensional architecture of biofilms. This EPS matrix is primarily composed of polysaccharides, proteins and extracellular DNA. In addition to supporting the community structure, the EPS matrix protects bacterial biofilms from the environment. Specifically, it shields the bacterial cells inside the biofilm, by preventing antimicrobial agents from getting in contact with them, thereby reducing their killing effect. New strategies for disrupting the formation of the EPS matrix can therefore lead to a more efficient use of existing antimicrobials. Here we examined the mechanism of the known effect of vitamin C (sodium ascorbate) on enhancing the activity of various antibacterial agents. Our quantitative proteomics analysis shows that non-lethal concentrations of vitamin C inhibit bacterial quorum sensing and other regulatory mechanisms underpinning biofilm development. As a result, the EPS biosynthesis in reduced, and especially the polysaccharide component of the matrix is depleted. Once the EPS content is reduced beyond a critical point, bacterial cells get fully exposed to the medium. At this stage, the cells are more susceptible to killing, either by vitamin C-induced oxidative stress as reported here, or by other antimicrobials or treatments.


Frontiers in Microbiology | 2016

Tyrosine 601 of Bacillus subtilis DnaK Undergoes Phosphorylation and Is Crucial for Chaperone Activity and Heat Shock Survival

Lei Shi; Vaishnavi Ravikumar; Abderahmane Derouiche; Boris Macek; Ivan Mijakovic

In order to screen for cellular substrates of the Bacillus subtilis BY-kinase PtkA, and its cognate phosphotyrosine-protein phosphatase PtpZ, we performed a triple Stable Isotope Labeling by Amino acids in Cell culture-based quantitative phosphoproteome analysis. Detected tyrosine phosphorylation sites for which the phosphorylation level decreased in the ΔptkA strain and increased in the ΔptpZ strain, compared to the wild type (WT), were considered as potential substrates of PtkA/PtpZ. One of those sites was the residue tyrosine 601 of the molecular chaperone DnaK. We confirmed that DnaK is a substrate of PtkA and PtpZ by in vitro phosphorylation and dephosphorylation assays. In vitro, DnaK Y601F mutant exhibited impaired interaction with its co-chaperones DnaJ and GrpE, along with diminished capacity to hydrolyze ATP and assist the re-folding of denatured proteins. In vivo, loss of DnaK phosphorylation in the mutant strain dnaK Y601F, or in the strain overexpressing the phosphatase PtpZ, led to diminished survival upon heat shock, consistent with the in vitro results. The decreased survival of the mutant dnaK Y601F at an elevated temperature could be rescued by complementing with the WT dnaK allele expressed ectopically. We concluded that the residue tyrosine 601 of DnaK can be phosphorylated and dephosphorylated by PtkA and PtpZ, respectively. Furthermore, Y601 is important for DnaK chaperone activity and heat shock survival of B. subtilis.


Frontiers in Microbiology | 2018

Phosphorylation of the Bacillus subtilis Replication Controller YabA Plays a Role in Regulation of Sporulation and Biofilm Formation

Tránsito García García; Magali Ventroux; Abderahmane Derouiche; Vladimir Bidnenko; Sara Correia Santos; Céline Henry; Ivan Mijakovic; Marie-Françoise Noirot-Gros; Sandrine Poncet

Bacillus subtilis cells can adopt different life-styles in response to various environmental cues, including planktonic cells during vegetative growth, sessile cells during biofilm formation and sporulation. While switching life-styles, bacteria must coordinate the progression of their cell cycle with their physiological status. Our current understanding of the regulatory pathways controlling the decision-making processes and triggering developmental switches highlights a key role of protein phosphorylation. The regulatory mechanisms that integrate the bacterial chromosome replication status with sporulation involve checkpoint proteins that target the replication initiator DnaA or the kinase phosphorelay controlling the master regulator Spo0A. B. subtilis YabA is known to interact with DnaA to prevent over-initiation of replication during vegetative growth. Here, we report that YabA is phosphorylated by YabT, a Ser/Thr kinase expressed during sporulation and biofilm formation. The phosphorylation of YabA has no effect on replication initiation control but hyper-phosphorylation of YabA leads to an increase in sporulation efficiency and a strong inhibition of biofilm formation. We also provide evidence that YabA phosphorylation affects the level of Spo0A-P in cells. These results indicate that YabA is a multifunctional protein with a dual role in regulating replication initiation and life-style switching, thereby providing a potential mechanism for cross-talk and coordination of cellular processes during adaptation to environmental change.


Frontiers in Microbiology | 2016

Substrate Specificity of the Bacillus subtilis BY-Kinase PtkA Is Controlled by Alternative Activators: TkmA and SalA.

Abderahmane Derouiche; Lei Shi; Aida Kalantari; Ivan Mijakovic

Bacterial protein-tyrosine kinases (BY-kinases) are known to regulate different aspects of bacterial physiology, by phosphorylating cellular protein substrates. Physiological cues that trigger BY-kinases activity are largely unexplored. In Proteobacteria, BY-kinases contain a cytosol-exposed catalytic domain and a transmembrane activator domain in a single polypeptide chain. In Firmicutes, the BY-kinase catalytic domain and the transmembrane activator domain exist as separate polypeptides. We have previously speculated that this architecture might enable the Firmicutes BY-kinases to interact with alternative activators, and thus account for the observed ability of these kinases to phosphorylate several distinct classes of protein substrates. Here, we present experimental evidence that supports this hypothesis. We focus on the model Firmicute-type BY-kinase PtkA from Bacillus subtilis, known to phosphorylate several different protein substrates. We demonstrate that the transcriptional regulator SalA, hitherto known as a substrate of PtkA, can also act as a PtkA activator. In doing so, SalA competes with the canonical PtkA activator, TkmA. Our results suggest that the respective interactions of SalA and TkmA with PtkA favor phosphorylation of different protein substrates in vivo and in vitro. This observation may contribute to explaining how specificity is established in the seemingly promiscuous interactions of BY-kinases with their cellular substrates.

Collaboration


Dive into the Abderahmane Derouiche's collaboration.

Top Co-Authors

Avatar

Ivan Mijakovic

Chalmers University of Technology

View shared research outputs
Top Co-Authors

Avatar

Lei Shi

Chalmers University of Technology

View shared research outputs
Top Co-Authors

Avatar

Aida Kalantari

Chalmers University of Technology

View shared research outputs
Top Co-Authors

Avatar

Magali Ventroux

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Vladimir Bidnenko

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Marie-Françoise Noirot-Gros

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Nathalie Pigonneau

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sylvie Nessler

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Boris Macek

University of Tübingen

View shared research outputs
Researchain Logo
Decentralizing Knowledge