Abdou Rachid Thiam
École Normale Supérieure
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Abdou Rachid Thiam.
Nature Reviews Molecular Cell Biology | 2013
Abdou Rachid Thiam; Robert V. Farese; Tobias C. Walther
Lipid droplets are intracellular organelles that are found in most cells, where they have fundamental roles in metabolism. They function prominently in storing oil-based reserves of metabolic energy and components of membrane lipids. Lipid droplets are the dispersed phase of an oil-in-water emulsion in the aqueous cytosol of cells, and the importance of basic biophysical principles of emulsions for lipid droplet biology is now being appreciated. Because of their unique architecture, with an interface between the dispersed oil phase and the aqueous cytosol, specific mechanisms underlie their formation, growth and shrinkage. Such mechanisms enable cells to use emulsified oil when the demands for metabolic energy or membrane synthesis change. The regulation of the composition of the phospholipid surfactants at the surface of lipid droplets is crucial for lipid droplet homeostasis and protein targeting to their surfaces.
eLife | 2014
Florian Wilfling; Abdou Rachid Thiam; Maria-Jesus Olarte; Jing Wang; Rainer Beck; Travis J. Gould; Edward S. Allgeyer; Frédéric Pincet; Joerg Bewersdorf; Robert V. Farese; Tobias C. Walther
Lipid droplets (LDs) are ubiquitous organelles that store neutral lipids, such as triacylglycerol (TG), as reservoirs of metabolic energy and membrane precursors. The Arf1/COPI protein machinery, known for its role in vesicle trafficking, regulates LD morphology, targeting of specific proteins to LDs and lipolysis through unclear mechanisms. Recent evidence shows that Arf1/COPI can bud nano-LDs (∼60 nm diameter) from phospholipid-covered oil/water interfaces in vitro. We show that Arf1/COPI proteins localize to cellular LDs, are sufficient to bud nano-LDs from cellular LDs, and are required for targeting specific TG-synthesis enzymes to LD surfaces. Cells lacking Arf1/COPI function have increased amounts of phospholipids on LDs, resulting in decreased LD surface tension and impairment to form bridges to the ER. Our findings uncover a function for Arf1/COPI proteins at LDs and suggest a model in which Arf1/COPI machinery acts to control ER-LD connections for localization of key enzymes of TG storage and catabolism. DOI: http://dx.doi.org/10.7554/eLife.01607.001
Proceedings of the National Academy of Sciences of the United States of America | 2013
Abdou Rachid Thiam; Bruno Antonny; Jing Wang; Jérôme Delacotte; Florian Wilfling; Tobias C. Walther; Rainer Beck; Frédéric Pincet
Intracellular trafficking between organelles is achieved by coat protein complexes, coat protomers, that bud vesicles from bilayer membranes. Lipid droplets are protected by a monolayer and thus seem unsuitable targets for coatomers. Unexpectedly, coat protein complex I (COPI) is required for lipid droplet targeting of some proteins, suggesting a possible direct interaction between COPI and lipid droplets. Here, we find that COPI coat components can bud 60-nm triacylglycerol nanodroplets from artificial lipid droplet (LD) interfaces. This budding decreases phospholipid packing of the monolayer decorating the mother LD. As a result, hydrophobic triacylglycerol molecules become more exposed to the aqueous environment, increasing LD surface tension. In vivo, this surface tension increase may prime lipid droplets for reactions with neighboring proteins or membranes. It provides a mechanism fundamentally different from transport vesicle formation by COPI, likely responsible for the diverse lipid droplet phenotypes associated with depletion of COPI subunits.
eLife | 2016
Huajin Wang; Michel Becuwe; Benjamin E. Housden; Chandramohan Chitraju; Ashley J. Porras; Morven Graham; Xinran Liu; Abdou Rachid Thiam; David B. Savage; Anil K. Agarwal; Abhimanyu Garg; Maria Jesus Olarte; Qingqing Lin; Florian Fröhlich; Hans Kristian Hannibal-Bach; Srigokul Upadhyayula; Norbert Perrimon; Tomas Kirchhausen; Christer S. Ejsing; Tobias C. Walther; Robert V. Farese
How proteins control the biogenesis of cellular lipid droplets (LDs) is poorly understood. Using Drosophila and human cells, we show here that seipin, an ER protein implicated in LD biology, mediates a discrete step in LD formation—the conversion of small, nascent LDs to larger, mature LDs. Seipin forms discrete and dynamic foci in the ER that interact with nascent LDs to enable their growth. In the absence of seipin, numerous small, nascent LDs accumulate near the ER and most often fail to grow. Those that do grow prematurely acquire lipid synthesis enzymes and undergo expansion, eventually leading to the giant LDs characteristic of seipin deficiency. Our studies identify a discrete step of LD formation, namely the conversion of nascent LDs to mature LDs, and define a molecular role for seipin in this process, most likely by acting at ER-LD contact sites to enable lipid transfer to nascent LDs. DOI: http://dx.doi.org/10.7554/eLife.16582.001
Journal of Biological Chemistry | 2016
Emily R Rowe; Michael L. Mimmack; Antonio Daniel Barbosa; Afreen Haider; Iona Isaac; Myriam M. Ouberai; Abdou Rachid Thiam; Satish Patel; Vladimir Saudek; Symeon Siniossoglou; David B. Savage
Perilipins (PLINs) play a key role in energy storage by orchestrating the activity of lipases on the surface of lipid droplets. Failure of this activity results in severe metabolic disease in humans. Unlike all other lipid droplet-associated proteins, PLINs localize almost exclusively to the phospholipid monolayer surrounding the droplet. To understand how they sense and associate with the unique topology of the droplet surface, we studied the localization of human PLINs in Saccharomyces cerevisiae, demonstrating that the targeting mechanism is highly conserved and that 11-mer repeat regions are sufficient for droplet targeting. Mutations designed to disrupt folding of this region into amphipathic helices (AHs) significantly decreased lipid droplet targeting in vivo and in vitro. Finally, we demonstrated a substantial increase in the helicity of this region in the presence of detergent micelles, which was prevented by an AH-disrupting missense mutation. We conclude that highly conserved 11-mer repeat regions of PLINs target lipid droplets by folding into AHs on the droplet surface, thus enabling PLINs to regulate the interface between the hydrophobic lipid core and its surrounding hydrophilic environment.
Biochimica et Biophysica Acta | 2016
Abdou Rachid Thiam; Lionel Foret
Lipid droplets (LDs) are intracellular oil-in-water emulsion droplets, covered by a phospholipid monolayer and mainly present in the cytosol. Despite their important role in cellular metabolism and growing number of newly identified functions, LD formation mechanism from the endoplasmic reticulum remains poorly understood. To form a LD, the oil molecules synthesized in the ER accumulate between the monolayer leaflets and induce deformation of the membrane. This formation process works through three steps: nucleation, growth and budding, exactly as in phase separation and dewetting phenomena. These steps involve sequential biophysical membrane remodeling mechanisms for which we present basic tools of statistical physics, membrane biophysics, and soft matter science underlying them. We aim to highlight relevant factors that could control LD formation size, site and number through this physics description. An emphasis will be given to a currently underestimated contribution of the molecular interactions between lipids to favor an energetically costless mechanism of LD formation.
Biophysical Journal | 2018
Aymeric Chorlay; Abdou Rachid Thiam
Cells store excess energy in the form of neutral lipids that are synthesized and encapsulated within the endoplasmic reticulum intermonolayer space. The lipids next demix to form lipid droplets (LDs), which, surprisingly, bud off mostly toward the cytosol. This directional LD formation is critical to energy metabolism, but its mechanism remains poorly understood. Here, we reconstituted the LD formation topology by embedding artificial LDs into the intermonolayer space of bilayer vesicles. We provide experimental evidence that the droplet behavior in the membrane is recapitulated by the physics of three-phase wetting systems, dictated by the equilibrium of surface tensions. We thereupon determined that slight tension asymmetries between the membrane monolayers regulate the droplet budding side. A differential regulation of lipid or protein composition around a forming LD can generate a monolayer tension asymmetry that will determine the LD budding side. Our results offer, to our knowledge, new insights on how the proteins might regulate LD formation side by generating a monolayer tension asymmetry.
PLOS ONE | 2015
Abdou Rachid Thiam; Frédéric Pincet
As a major actor of cellular trafficking, COPI coat proteins assemble on membranes and locally bend them to bud 60 nm-size coated particles. Budding requires the energy of the coat assembly to overcome the one necessary to deform the membrane which primarily depends on the bending modulus and surface tension, γ. Using a COPI-induced oil nanodroplet formation approach, we modulated the budding of nanodroplets using various amounts and types of surfactant. We found a Heaviside-like dependence between the budding efficiency and γ: budding was only dependent on γ and occurred beneath 1.3 mN/m. With the sole contribution of γ to the membrane deformation energy, we assessed that COPI supplies ~1500 kBT for budding particles from membranes, which is consistent with common membrane deformation energies. Our results highlight how a simple remodeling of the composition of membranes could mechanically modulate budding in cells.
Biophysical Journal | 2017
François Deslandes; Abdou Rachid Thiam; Lionel Foret
Lipid droplets (LDs) are cytosolic organelles that protrude from the endoplasmic reticulum membrane under energy-rich conditions. How an LD buds off from the endoplasmic reticulum bilayer is still elusive. By using a continuous media description, we computed the morphology of a lipid droplet embedded in between two identical monolayers of a bilayer. We found that beyond a critical volume, the droplet morphology abruptly transits from a symmetrical elongated lens to a spherical protrusion. This budding transition does not require any energy-consuming machinery, or curvature-inducing agent, or intrinsic asymmetry of the bilayer; it is solely driven by the large interfacial energy of the LD, as opposed to the bilayer surface tension. This spontaneous budding mechanism gives key insights on cellular LD formation.
Lab on a Chip | 2014
Gilad Kaufman; Rostislav Boltyanskiy; Siamak Nejati; Abdou Rachid Thiam; Michael Loewenberg; Eric R. Dufresne; Chinedum O. Osuji