Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Abdul Abduz Zahir is active.

Publication


Featured researches published by Abdul Abduz Zahir.


Experimental Parasitology | 2012

Evaluation of stem aqueous extract and synthesized silver nanoparticles using Cissus quadrangularis against Hippobosca maculata and Rhipicephalus (Boophilus) microplus

Thirunavukkarasu Santhoshkumar; Abdul Abdul Rahuman; Asokan Bagavan; Sampath Marimuthu; Chidambaram Jayaseelan; Arivarasan Vishnu Kirthi; Chinnaperumal Kamaraj; Govindasamy Rajakumar; Abdul Abduz Zahir; Gandhi Elango; Kanayairam Velayutham; Moorthy Iyappan; Chinnadurai Siva; Loganathan Karthik; Kokati Venkata Bhaskara Rao

The present study was to determine the efficacies of anti-parasitic activities of synthesized silver nanoparticles (Ag NPs) using stem aqueous extract of Cissus quadrangularis against the adult of hematophagous fly, Hippobosca maculata (Diptera: Hippoboscidae), and the larvae of cattle tick, Rhipicephalus (Boophilus) microplus (Acari: Ixodidae). Contact toxicity method was followed to determine the potential of parasitic activity. Twelve milliliters of stem aqueous extract of C. quadrangularis was treated with 88 ml of 1mM silver nitrate (AgNO(3)) solution at room temperature for 30 min and the resulting solution was yellow-brown color indicating the formation extracellular synthesis of Ag NPs. The synthesized Ag NPs were characterized with UV-visible spectroscopy, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Field emission scanning electron microscope (FESEM) and energy dispersive X-ray (EDX) spectroscopy. The synthesized Ag NPs were recorded by UV-visible spectrum at 420 nm and XRD patterns showed the nanoparticles crystalline in nature. FTIR analysis confirmed that the bioreduction of Ag((+)) ions to Ag NPs were due to the reduction by capping material of plant extract. FESEM image of Ag NPs showed spherical and oval in shape. By using the Braggs Law and Scherrers constant, the average mean size of synthesized Ag NPs was 42.46 nm. The spot EDX analysis showed the complete chemical composition of the synthesized Ag NPs. The mortality obtained by the synthesized Ag NPs from the C. quadrangularis was more effective than the aqueous extract of C. quadrangularis and AgNO(3) solution (1 mM). The adulticidal activity was observed in the aqueous extract, AgNO(3) solution and synthesized Ag NPs against the adult of H. maculata with LC(50) values of 37.08, 40.35 and 6.30 mg/L; LC(90) values of 175.46, 192.17 and 18.14 mg/L and r(2) values of 0.970, 0.992 and 0.969, respectively. The maximum efficacy showed in the aqueous extract, AgNO(3) solution and synthesized Ag NPs against the larvae of R. (B.) microplus with LC(50) values of 50.00, 21.72 and 7.61 mg/L; LC(90) values of 205.12, 82.99 and 22.68 mg/L and r(2) values of 0.968, 0.945 and 0.994, respectively. The present study is the first report on antiparasitic activity of the experimental plant extract and synthesized Ag NPs. This is an ideal eco-friendly and inexpensive approach for the control of H. maculata and R. (B.) microplus.


Parasitology Research | 2011

Anthelmintic activity of botanical extracts against sheep gastrointestinal nematodes, Haemonchus contortus

Chinnaperumal Kamaraj; Abdul Abdul Rahuman; Gandhi Elango; Asokan Bagavan; Abdul Abduz Zahir

The source of chemical anthelmintics (levamisole, flubendazole, and thiabendazole) had limited the success of gastrointestinal nematodiasis control in sheep and goats and thus awakened interest in the study of medicinal plant extracts as alternative sources of anthelmintics. The egg hatching and larvicidal effect of indigenous plant extracts were investigated against the sheep parasite, Haemonchus contortus. The purpose of the present study was to assess the efficacy of leaf, bark, and seed ethyl acetate, acetone and methanol extracts of Andrographis paniculata (Burm.f.) Wall. ex Nees., Anisomeles malabarica (L.) R. Br., Annona squamosa L., Datura metel L., and Solanum torvum Swartz were tested against the parasitic nematode of small ruminants H. contortus using egg hatch assay (EHA) and larval development assay (LDA). The assays were run in 24-well cell culture plates at room temperature with five replicates. All plant extracts showed moderate parasitic effects after 48 and exposure for egg hatching and LDA, respectively; however, 100% egg hatching and larvicidal inhibition were found in the methanol extracts of A. paniculata, A. squamosa, D. metel, and S. torvum at 25 mg/ml and the effect was similar to positive control of Albendazole (0.075 mg/ml) and Ivermectin (0.025mg/ml) against H. contortus, respectively. The EHA result showed the ED50 of methanol extracts of A. paniculata and D. metel, which were 2.90 and 3.08 mg/ml, and in larval development assay, the ED50 was 4.26and 3.86 mg/ml, respectively. These effects remain to be confirmed through in vivo studies.


Antimicrobial Agents and Chemotherapy | 2015

Green Synthesis of Silver and Titanium Dioxide Nanoparticles Using Euphorbia prostrata Extract Shows Shift from Apoptosis to G0/G1 Arrest followed by Necrotic Cell Death in Leishmania donovani

Abdul Abduz Zahir; Indira Singh Chauhan; Asokan Bagavan; Chinnaperumal Kamaraj; Gandhi Elango; Jai Shankar; Nidhi Arjaria; Selvaraj Mohana Roopan; Abdul Abdul Rahuman; Neeloo Singh

ABSTRACT The aim of the present study was to synthesize silver (Ag) and titanium dioxide (TiO2) nanoparticles (NPs) using green synthesis from aqueous leaf extract of Euphorbia prostrata as antileishmanial agents and to explore the underlying molecular mechanism of induced cell death. In vitro antileishmanial activity of synthesized NPs was tested against promastigotes of Leishmania donovani by alamarBlue and propidium iodide uptake assays. Antileishmanial activity of synthesized NPs on intracellular amastigotes was assessed by Giemsa staining. The leishmanicidal effect of synthesized Ag NPs was further confirmed by DNA fragmentation assay and by cell cycle progression and transmission electron microscopy (TEM) of the treated parasites. TEM analysis of the synthesized Ag NPs showed a spherical shape with an average size of 12.82 ± 2.50 nm, and in comparison to synthesized TiO2 NPs, synthesized Ag NPs were found to be most active against Leishmania parasites after 24 h exposure, with 50% inhibitory concentrations (IC50) of 14.94 μg/ml and 3.89 μg/ml in promastigotes and intracellular amastigotes, respectively. A significant increase in G0/G1 phase of the cell cycle with a subsequent decrease in S (synthesis) and G2/M phases compared to controls was observed. The growth-inhibitory effect of synthesized Ag NPs was attributed to increased length of S phase. A decreased reactive oxygen species level was also observed, which could be responsible for the caspase-independent shift from apoptosis (G0/G1 arrest) to massive necrosis. High-molecular-weight DNA fragmentation as a positive consequence of necrotic cell death was also visualized. We also report that the unique trypanothione/trypanothione reductase (TR) system of Leishmania cells was significantly inhibited by synthesized Ag NPs. The green-synthesized Ag NPs may provide promising leads for the development of cost-effective and safer alternative treatment against visceral leishmaniasis.


Journal of Ethnopharmacology | 2012

Antimalarial activities of medicinal plants traditionally used in the villages of Dharmapuri regions of South India.

Chinnaperumal Kamaraj; Naveen Kumar Kaushik; Abdul Abdul Rahuman; Dinesh Mohanakrishnan; Asokan Bagavan; Gandhi Elango; Abdul Abduz Zahir; Thirunavukkarasu Santhoshkumar; Sampath Marimuthu; Chidambaram Jayaseelan; Arivarasan Vishnu Kirthi; Govindasamy Rajakumar; Kanayairam Velayutham; Dinkar Sahal

ETHNOPHARMACOLOGICAL RELEVANCE An ethnopharmacological investigation of medicinal plants traditionally used to treat diseases associated with fevers in Dharmapuri region of South India was undertaken. Twenty four plants were identified and evaluated for their in vitro activity against Plasmodium falciparum and assessed for cytotoxicity against HeLa cell line. AIM OF THE STUDY This antimalarial in vitro study was planned to correlate and validate the traditional usage of medicinal plants against malaria. MATERIALS AND METHODS An ethnobotanical survey was made in Dharmapuri region, Tamil Nadu, India to identify plants used in traditional medicine against fevers. Selected plants were extracted with ethyl acetate and methanol and evaluated for antimalarial activity against erythrocytic stages of chloroquine (CQ)-sensitive 3D7 and CQ-resistant INDO strains of Plasmodium falciparum in culture using the fluorescence-based SYBR Green I assay. Cytotoxicity was determined against HeLa cells using MTT assay. RESULTS Promising antiplasmodial activity was found in Aegle marmelos [leaf methanol extract (ME) (IC(50)=7 μg/mL] and good activities were found in Lantana camara [leaf ethyl acetate extract (EAE) IC(50)=19 μg/mL], Leucas aspera (flower EAE IC(50)=12.5 μg/mL), Momordica charantia (leaf EAE IC(50)=17.5 μg/mL), Phyllanthus amarus (leaf ME IC(50)=15 μg/mL) and Piper nigrum (seed EAE IC(50)=12.5 μg/mL). The leaf ME of Aegle marmelos which showed the highest activity against Plasmodium falciparum elicited low cytotoxicity (therapeutic index>13). CONCLUSION These results provide validation for the traditional usage of some medicinal plants against malaria in Dharmapuri region, Tamil Nadu, India.


Asian Pacific Journal of Tropical Medicine | 2011

Larvicidal and repellent activity of medicinal plant extracts from Eastern Ghats of South India against malaria and filariasis vectors

Chinnaperumal Kamaraj; Abdul Abdul Rahuman; Asokan Bagavan; Gandhi Elango; Abdul Abduz Zahir; Thirunavukkarasu Santhoshkumar

OBJECTIVE To evaluate the larvicidal and repellent activities of ethyl acetate and methanol extracts of Acacia concinna (A. concinna), Cassia siamea (C. siamea), Coriandrum sativum (C. sativum),Cuminum cyminum (C. cyminum), Lantana camara (L. camara), Nelumbo nucifera (N. nucifera) Phyllanthus amarus (P. amarus), Piper nigrum (P. nigrum) and Trachyspermum ammi (T. ammi) against Anopheles stephensi (An. stephensi) and Culex quinquefasciatus (Cx. quinquefasciatus). METHODS The larvicidal activity of medicinal plant extracts were tested against early fourth-instar larvae of malaria and filariasis vectors. The mortality was observed 24 h and 48 h after treatment, data were subjected to probit analysis to determine the lethal concentrations (LC(50) and LC(90)) to kill 50 and 90 per cent of the treated larvae of the tested species. The repellent efficacy was determined against two mosquito species at five concentrations (31.25, 62.50, 125.00, 250.00, and 500.00 ppm) under the laboratory conditions. RESULTS All plant extracts showed moderate effects after 24 h and 48 h of exposure; however, the highest activity was observed after 24 h in the leaf methanol extract of N. nucifera, seed ethyl acetate and methanol extract of P. nigrum against the larvae of An. stephensi (LC(50) = 34.76, 24.54 and 30.20 ppm) and against Cx. quinquefasciatus (LC(50) = 37.49, 43.94 and 57.39 ppm), respectively. The toxic effect of leaf methanol extract of C. siamea, seed methanol extract of C. cyminum, leaf ethyl acetate extract of N. nucifera, leaf ethyl acetate and methanol extract of P. amarus and seed methanol extract of T. ammi were showed 100% mortality against An. stephensi and Cx. quinquefasciatus after 48 h exposer. The maximum repellent activity was observed at 500 ppm in methanol extracts of N. nucifera, ethyl acetate and methanol extract of P. nigrum and methanol extract of T. ammi and the mean complete protection time ranged from 30 to 150 min with the different extracts tested. CONCLUSIONS These results suggest that the leaf and seed extracts of C. siamea, N. nucifera, P. amarus, P. nigrum and T. ammi have the potential to be used as an ideal ecofriendly approach for the control of the An. stephensi and Cx. quinquefasciatus.


Veterinary Parasitology | 2013

Novel and simple approach using synthesized nickel nanoparticles to control blood-sucking parasites.

Govindasamy Rajakumar; Abdul Abdul Rahuman; Kanayairam Velayutham; Jeyaraman Ramyadevi; Kadarkaraithangam Jeyasubramanian; Arumugam Marikani; Gandhi Elango; Chinnaperumal Kamaraj; Thirunavukkarasu Santhoshkumar; Sampath Marimuthu; Abdul Abduz Zahir; Asokan Bagavan; Chidambaram Jayaseelan; Arivarasan Vishnu Kirthi; Moorthy Iyappan; Chinnadurai Siva

The present study was on assessment of the anti-parasitic activities of nickel nanoparticles (Ni NPs) against the larvae of cattle ticks Rhipicephalus (Boophilus) microplus and Hyalomma anatolicum (a.) anatolicum (Acari: Ixodidae), fourth instar larvae of Anopheles subpictus, Culex quinquefasciatus and Culex gelidus (Diptera: Culicidae). The metallic Ni NPs were synthesized by polyol process from Ni-hydrazine as precursor and Tween 80 as both the medium and the stabilizing reagent. The synthesized Ni NPs were characterized by Fourier transform infrared (FTIR) spectroscopy analysis which indicated the presence of Ni NPs. Synthesized Ni NPs showed the X-ray diffraction (XRD) peaks at 42.76°, 53.40°, and 76.44°, identified as 111, 220, and 200 reflections, respectively. Scanning electron microscopy (SEM) analysis of the synthesized Ni NPs clearly showed that the Ni NPs were spherical in shape with an average size of 150 nm. The Ni NPs showed maximum activity against the larvae of R. (B.) microplus, H. a. anatolicum, A. subpictus, C. quinquefasciatus and C. gelidus with LC(50) values of 10.17, 10.81, 4.93, 5.56 and 4.94 mg/L; r(2) values of 0.990, 0.993, 0.992, 0.950 and 0.988 and the efficacy of Ni-hydrazine complexes showed the LC(50) values of 20.35, 22.72, 8.29, 9.69 and 7.83 mg/L; r(2) values of 0.988, 0.986, 0.989, 0.944 and 0.978, respectively. The findings revealed that synthesized Ni NPs possess excellent larvicidal parasitic activity. To the best of our knowledge, this is the first report on larvicidal activity of blood feeding parasites using synthesized Ni NPs.


Experimental Parasitology | 2012

Evaluation of antileishmanial activity of South Indian medicinal plants against Leishmania donovani

Abdul Abduz Zahir; Abdul Abdul Rahuman; Sourav Pakrashi; Debopam Ghosh; Asokan Bagavan; Chinnaperumal Kamaraj; Gandhi Elango; Mitali Chatterjee

Infections due to protozoa of the genus Leishmania are a major worldwide health problem, with high endemicity in developing countries. The aim of this study was to evaluate the in vitro antileishmanial activity of the acetone and methanol leaf extracts of Anisomeles malabarica, flower of Gloriosa superba, leaf of Ocimum basilicum, leaf and seed of Ricinus communis against promastigotes form of Leishmania donovani. Antiparasitic evaluations of different plant crude extracts were performed on 96 well plates at 37°C for 24-48 h. Out of the 10 experimental plant extracts tested, the leaf methanol extracts of A. malabarica, and R. communis showed good antileishmanial activity (IC(50)=126±19.70 and 184±39.33 μg/mL), respectively against promastigotes. Effective antileishmanial activity was observed making these plants as good candidates for isolation of antiprotozoal compounds which could serve as new lead structures for drug development.


Experimental Parasitology | 2013

Antiplasmodial potential of selected medicinal plants from Eastern Ghats of South India

Naveen Kumar Kaushik; Asokan Bagavan; Abdul Abdul Rahuman; Dinesh Mohanakrishnan; Chinnaperumal Kamaraj; Gandhi Elango; Abdul Abduz Zahir; Dinkar Sahal

Malaria caused by the protozoan parasite Plasmodium falciparum, is a major health problem of the developing world. In the present study medicinal plants from Eastern Ghats of South India have been extracted with ethyl acetate and assayed for growth inhibition of asexual erythrocytic stages of chloroquine (CQ)-sensitive (3D7) and (CQ)-resistant (INDO) strains of P. falciparum in culture using the fluorescence-based SYBR Green I assay. Studied extracts showed a spectrum of antiplasmodial activities ranging from (a) very good (IC(50)<10-10 μg/mL: Cyperus rotundus and Zingiber officinale); (b) good (IC(50), >10-15 μg/mL: Ficus religiosa and Murraya koenigii); (c) moderate (IC(50)>15-25 μg/mL: Ficus benghalensis); (d) poor activity (IC(50)>25-60 μg/mL) and (e) inactive (IC(50)>60 μg/mL). Resistance indices ranging from 0.78 to 1.28 suggest that some of these extracts had equal promise against the CQ resistant INDO strain of P. falciparum. Cytotoxicity assessment of the extracts against HeLa cell line using MTT assay revealed that the selectivity indices in the range of 3-15 suggesting a good margin of safety.


Asian Pacific Journal of Tropical Medicine | 2010

Adult emergence inhibition and adulticidal activities of medicinal plant extracts against Anopheles stephensi Liston

Abdul Abduz Zahir; Abdul Abdul Rahuman; Asokan Bagavan; Gandhi Elango; Chinnaperumal Kamaraj

Objective: To determine the adult emergence inhibition (EI) and adulticidal activities of hexane, chloroform, ethyl acetate, and acetone leaves extracts of Anisomeles malabarica (A. malabarica), Euphorbia hirta (E. hirta), Ocimum basilkum (O. basilicum), Ricinus communis (R. communis), Solanum trilobatum (S. trilobatum), Tridax procumbens (T. procumbens) and seeds of Gloriosa superba (G. superba) against Anopheles stephensi (An. stephensi). Methods: The EI and adulticidal trials were carried out according to World Health Organization (WHO) procedures with slight modifications. The extracts were diluted in dimethyl sulphoxide in order to prepare a serial dilution of test dosages (15.625, 31.25. 62.5, 125, 250, 500 and 1000 μg/mL). Five duplicate trials were carried out for every sample concentration, and for each trial a negative control was included and the mortality was determined after 24 h of exposure. Results: The highest El activity was found in ethyl acetate extracts of A. malabarica, chloroform extracts of O. basilicum, S. trilobatum, acetone of extract of R. communis, T. procumbens, and seed extract of C. superba with EI50 values 143.12, 119.82, 157.87, 139.39, 111.19, and 134.85 μg/mL, and the effective adulticidal activity was observed in chloroform, acetone extracts of C. superba, T. procumbens, R. communis, S. trilobatum and ethyl acetate extract of O. basilicum with LD50 values 120.17, 108.77, 127.22, 163.11, 118.27, and 93.02 μg/mL, respectively. Chi-square value was significant at P<0.05 level. Conclusions: These results should encourage further efforts to investigate the compounds that might possess good EI and adulticidal properties when isolated in pure form.


Journal of Nanomedicine & Nanotechnology | 2014

Synthesis of Nanoparticles Using Euphorbia prostrata Extract Reveals a Shift from Apoptosis to G0/G1 Arrest in Leishmania donovani

Abdul Abduz Zahir; Indira Singh Chauhan; Asokan Bagavan; Chinnaperumal Kamaraj; Gandhi Elango; Jai Shankar; Nidhi Arjaria; Mohana Roopan; Abdul Abdul Rahuman; Neeloo Singh; C. Abdul

The aim of the present investigation was to synthesize silver (Ag) and titanium dioxide (TiO2) nanoparticles (NPs) using the aqueous leaves extract of Euphorbia prostrata as antileishmanial agents and to explore the mechanism of induced cell death. In vitro antileishmanial activity of synthesized NPs was tested against promastigotes of Leishmania donovani by alamar Blue® cell viability reagent and propidium iodide uptake assay. The effective leishmanicidal activity of synthesized Ag NPs was further confirmed by cell cycle progression, externalized phosphatidylserine, DNA fragmentation assay, reactive oxygen species (ROS) level, intracellular non-protein thiols and transmission electron microscopy (TEM) of the treated parasites. TEM analysis of the synthesized Ag NPs and TiO2 NPs showed spherical shape with an average size of 12.82 ± 2.50 and 83.22 ± 1.50 nm, respectively. Ag NPs was found to be the most active agent against Leishmania parasites after 24 h exposure with IC50 value of 14.94 μg/mL. A significant increase in G0/ G1 phase of the cell cycle with subsequent decrease in S and G2/M phases was observed when compared to control and thus confirming the growth inhibitory effect of synthesized Ag NPs. Decreased ROS level was also observed which could be responsible for caspase independent shift from apoptosis (G0/G1 arrest) to massive necrosis. High molecular weight DNA fragmentation as a positive consequence of necrotic cell death was also visualized. In the present study, the unique trypanothione/trypanothione reductase (TR) system of Leishmania cells was significantly inhibited by synthesized Ag NPs was reported. The green synthesized Ag NPs may provide promising leads for the development of cost effective and safer alternative treatment against visceral leishmaniasis.

Collaboration


Dive into the Abdul Abduz Zahir's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge