Abdul Hamid Adom
Universiti Malaysia Perlis
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Abdul Hamid Adom.
Sensors | 2011
Ammar Zakaria; Ali Yeon Md Shakaff; Maz Jamilah Masnan; Mohd Noor Ahmad; Abdul Hamid Adom; Mahmad Nor Jaafar; Supri.A. Ghani; A. H. Abdullah; Abdul Hallis Abdul Aziz; Latifah Munirah Kamarudin; Norazian Subari; Nazifah Ahmad Fikri
The major compounds in honey are carbohydrates such as monosaccharides and disaccharides. The same compounds are found in cane-sugar concentrates. Unfortunately when sugar concentrate is added to honey, laboratory assessments are found to be ineffective in detecting this adulteration. Unlike tracing heavy metals in honey, sugar adulterated honey is much trickier and harder to detect, and traditionally it has been very challenging to come up with a suitable method to prove the presence of adulterants in honey products. This paper proposes a combination of array sensing and multi-modality sensor fusion that can effectively discriminate the samples not only based on the compounds present in the sample but also mimic the way humans perceive flavours and aromas. Conversely, analytical instruments are based on chemical separations which may alter the properties of the volatiles or flavours of a particular honey. The present work is focused on classifying 18 samples of different honeys, sugar syrups and adulterated samples using data fusion of electronic nose (e-nose) and electronic tongue (e-tongue) measurements. Each group of samples was evaluated separately by the e-nose and e-tongue. Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA) were able to separately discriminate monofloral honey from sugar syrup, and polyfloral honey from sugar and adulterated samples using the e-nose and e-tongue. The e-nose was observed to give better separation compared to e-tongue assessment, particularly when LDA was applied. However, when all samples were combined in one classification analysis, neither PCA nor LDA were able to discriminate between honeys of different floral origins, sugar syrup and adulterated samples. By applying a sensor fusion technique, the classification for the 18 different samples was improved. Significant improvement was observed using PCA, while LDA not only improved the discrimination but also gave better classification. An improvement in performance was also observed using a Probabilistic Neural Network classifier when the e-nose and e-tongue data were fused.
Sensors | 2010
Wahyu Hidayat; Ali Yeon Md Shakaff; Mohd Noor Ahmad; Abdul Hamid Adom
Presently, the quality assurance of agarwood oil is performed by sensory panels which has significant drawbacks in terms of objectivity and repeatability. In this paper, it is shown how an electronic nose (e-nose) may be successfully utilised for the classification of agarwood oil. Hierarchical Cluster Analysis (HCA) and Principal Component Analysis (PCA), were used to classify different types of oil. The HCA produced a dendrogram showing the separation of e-nose data into three different groups of oils. The PCA scatter plot revealed a distinct separation between the three groups. An Artificial Neural Network (ANN) was used for a better prediction of unknown samples.
Expert Systems With Applications | 2015
Hasimah Ali; M. Hariharan; Sazali Yaacob; Abdul Hamid Adom
A new approach of using EMD and KLFDA for facial emotion recognition is presented.Dimension reduction by PCA+LDA, LFDA and KLFDA can improve the performance.Recognition rate of 99.75% was achieved by IMF1+KLFDA using ELM classifier. This paper proposes a new method of using empirical mode decomposition (EMD) technique for facial emotion recognition. The EMD algorithm can decompose any nonlinear and non-stationary signal into a number of intrinsic mode functions (IMFs). In this method, the facial signal obtained from successive projection of Radon transform of 2-D image is decomposed using EMD into oscillating components called IMFs. The first IMF (IMF1) was extracted and considered as features to recognize the facial emotions. Three dimensionality reduction algorithms: Principal Component Analysis (PCA)+Linear Discriminant Analysis (LDA), PCA+Local Fisher Discriminant Analysis (LFDA), and Kernel LFDA (KLFDA) were independently applied on EMD-based features for dimensionality reduction. These dimensionality reduced features were fed to the k-Nearest Neighbor (k-NN), Support Vector machine (SVM) and Extreme Learning Machines with Radial Basis Function (ELM-RBF) classifiers for classification of seven universal facial expressions. The proposed method was evaluated using two benchmark databases JAFFE and CK. The experimental results on both facial expression databases demonstrate the effectiveness of the proposed algorithm.
Sensors | 2010
Ammar Zakaria; Ali Yeon Md Shakaff; Abdul Hamid Adom; Mohd Noor Ahmad; Maz Jamilah Masnan; Abdul Hallis Abdul Aziz; Nazifah Ahmad Fikri; A. H. Abdullah; Latifah Munirah Kamarudin
An improved classification of Orthosiphon stamineus using a data fusion technique is presented. Five different commercial sources along with freshly prepared samples were discriminated using an electronic nose (e-nose) and an electronic tongue (e-tongue). Samples from the different commercial brands were evaluated by the e-tongue and then followed by the e-nose. Applying Principal Component Analysis (PCA) separately on the respective e-tongue and e-nose data, only five distinct groups were projected. However, by employing a low level data fusion technique, six distinct groupings were achieved. Hence, this technique can enhance the ability of PCA to analyze the complex samples of Orthosiphon stamineus. Linear Discriminant Analysis (LDA) was then used to further validate and classify the samples. It was found that the LDA performance was also improved when the responses from the e-nose and e-tongue were fused together.
Expert Systems With Applications | 2017
C K Yogesh; M. Hariharan; Ruzelita Ngadiran; Abdul Hamid Adom; Sazali Yaacob; Chawki Berkai; Kemal Polat
Abstract Speech signals and glottal signals convey speakers’ emotional state along with linguistic information. To recognize speakers’ emotions and respond to it expressively is very much important for human-machine interaction. To develop a subject independent speech emotion/stress recognition system, by identifying speakers emotion from their voices, features from OpenSmile toolbox, higher order spectral features and feature selection algorithm, is proposed in this work. Feature selection plays an important role in overcoming the challenge of dimensionality in several applications. This paper proposes a new particle swarm optimization assisted Biogeography-based algorithm for feature selection. The simulations were conducted using Berlin Emotional Speech Database (BES), Surrey Audio-Visual Expressed Emotion Database (SAVEE), Speech under Simulated and Actual Stress (SUSAS) and also validated using eight benchmark datasets. These datasets are of different dimensions and classes. Totally eight different experiments were conducted and obtained the recognition rates in range of 90.31%–99.47% (BES database), 62.50%–78.44% (SAVEE database) and 85.83%–98.70% (SUSAS database). The obtained results convincingly prove the effectiveness of the proposed feature selection algorithm when compared to the previous works and other metaheuristic algorithms (BBO and PSO).
Sensors | 2012
Ammar Zakaria; Ali Yeon Md Shakaff; Maz Jamilah Masnan; Fathinul Syahir Ahmad Saad; Abdul Hamid Adom; Mohd Noor Ahmad; Mahmad Nor Jaafar; A. H. Abdullah; Latifah Munirah Kamarudin
In recent years, there have been a number of reported studies on the use of non-destructive techniques to evaluate and determine mango maturity and ripeness levels. However, most of these reported works were conducted using single-modality sensing systems, either using an electronic nose, acoustics or other non-destructive measurements. This paper presents the work on the classification of mangoes (Magnifera Indica cv. Harumanis) maturity and ripeness levels using fusion of the data of an electronic nose and an acoustic sensor. Three groups of samples each from two different harvesting times (week 7 and week 8) were evaluated by the e-nose and then followed by the acoustic sensor. Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA) were able to discriminate the mango harvested at week 7 and week 8 based solely on the aroma and volatile gases released from the mangoes. However, when six different groups of different maturity and ripeness levels were combined in one classification analysis, both PCA and LDA were unable to discriminate the age difference of the Harumanis mangoes. Instead of six different groups, only four were observed using the LDA, while PCA showed only two distinct groups. By applying a low level data fusion technique on the e-nose and acoustic data, the classification for maturity and ripeness levels using LDA was improved. However, no significant improvement was observed using PCA with data fusion technique. Further work using a hybrid LDA-Competitive Learning Neural Network was performed to validate the fusion technique and classify the samples. It was found that the LDA-CLNN was also improved significantly when data fusion was applied.
Digital Signal Processing | 2013
M. Hariharan; C. Y. Fook; R. Sindhu; Abdul Hamid Adom; Sazali Yaacob
Dysfluency and stuttering are a break or interruption of normal speech such as repetition, prolongation, interjection of syllables, sounds, words or phrases and involuntary silent pauses or blocks in communication. Stuttering assessment through manual classification of speech dysfluencies is subjective, inconsistent, time consuming and prone to error. This paper proposes an objective evaluation of speech dysfluencies based on the wavelet packet transform with sample entropy features. Dysfluent speech signals are decomposed into six levels by using wavelet packet transform. Sample entropy (SampEn) features are extracted at every level of decomposition and they are used as features to characterize the speech dysfluencies (stuttered events). Three different classifiers such as k-nearest neighbor (kNN), linear discriminant analysis (LDA) based classifier and support vector machine (SVM) are used to investigate the performance of the sample entropy features for the classification of speech dysfluencies. 10-fold cross validation method is used for testing the reliability of the classifier results. The effect of different wavelet families on the classification performance is also performed. Experimental results demonstrate that the proposed features and classification algorithms give very promising classification accuracy of 96.67% with the standard deviation of 0.37 and also that the proposed method can be used to help speech language pathologist in classifying speech dysfluencies.
international colloquium on signal processing and its applications | 2010
Norasmadi Abdul Rahim; M. P. Paulraj; Abdul Hamid Adom; Sathishkumar Sundararaj
The hearing impaired is afraid of walking along a street and living a life alone. Since, it is difficult for hearing impaired to hear and judge sound information and they often encounter risky situations while they are in outdoors. The sound produced by moving vehicle in outdoor situation cannot be moderate wisely by profoundly deaf people. They also cannot distinguish the type and the distance of any moving vehicle approaching from their behind. Generally the profoundly deaf people do not use any hearing aid which does not provide any benefit. In this paper, a simple system that identifies the type and distance of a moving vehicle using artificial neural network has been proposed. The noises emanated from moving vehicles along the roadside were recorded along with the type and distance of moving vehicles. Simple feature extraction algorithm for extracting the feature from noise emanated by the moving vehicle has been made using frequency analysis approach. A one-third-octave filter bands is used for getting the important signatures from the emanated noise. The extracted features are associated with the type and distance of the moving vehicle and a simple neural network model is developed. The developed neural network model is tested for its validity.
international conference on electronic design | 2008
C.R. Hema; M. P. Paulraj; Sazali Yaacob; Abdul Hamid Adom; R. Nagarajan
Motor imagery is the mental simulation of a motor act that includes preparation for movement and mental operations of motor representations implicitly or explicitly. The ability of an individual to control his EEG through imaginary mental tasks enables him to control devices through a brain machine interfaces (BMI). In other words a BMI can be used to rehabilitate people suffering from neuromuscular disorders as a means of communication or control. This paper presents a novel approach in the design of a four state BMI using two electrodes. The BMI is designed using Neural Network Classifiers. The performance of the BMI is evaluated using two network architectures. The performance of the proposed algorithm has an average classification efficiency of 93.5%.
international conference on intelligent systems, modelling and simulation | 2012
A. H. Abdullah; Abdul Hamid Adom; Ali Yeon Md Shakaff; Mohd Noor Ahmad; Ammar Zakaria; Fathinul Syahir Ahmad Saad; C.M.N.C Isa; Maz Jamilah Masnan; Latifah Munirah Kamarudin
Electronic Nose (e-nose) is an intelligent instrument that is able to classify different types of odours. The e-nose applications include food quality assurance, fragrance industry, medical diagnosis, environmental monitoring, agricultural industry and homeland security. The current e-nose design trend are portable, small size, low power consumption, high processing power using embedded controller and easy to operate to enable it to perform the designed tasks effectively. This paper deals with the design issues of a hand-held e-nose based on sensor selection and optimum embedded controller capabilities. A summary of proposed hardware and software solutions are provided with emphasis on data processing. The data processing utilizes multivariate statistical analysis i.e. Principal Component Analysis (PCA), Hierarchical Cluster Analysis (HCA) and Linear Discriminate Analysis (LDA). The developed instrument was tested to discriminate the Ganoderma boninense fruiting body (basidiocarp). Initial results show that the instrument is able to discriminate the samples based on their odour chemical fingerprint profile.