Abdulkadir Şengür
Fırat University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Abdulkadir Şengür.
Computer Methods and Programs in Biomedicine | 2016
Yanhui Guo; Abdulkadir Şengür; Jiawei Tian
Breast ultrasound (BUS) image segmentation is a challenging task due to the speckle noise, poor quality of the ultrasound images and size and location of the breast lesions. In this paper, we propose a new BUS image segmentation algorithm based on neutrosophic similarity score (NSS) and level set algorithm. At first, the input BUS image is transferred to the NS domain via three membership subsets T, I and F, and then, a similarity score NSS is defined and employed to measure the belonging degree to the true tumor region. Finally, the level set method is used to segment the tumor from the background tissue region in the NSS image. Experiments have been conducted on a variety of clinical BUS images. Several measurements are used to evaluate and compare the proposed methods performance. The experimental results demonstrate that the proposed method is able to segment the BUS images effectively and accurately.
Network Modeling Analysis in Health Informatics and BioInformatics | 2012
Mehmet Üstündağ; Muammer Gökbulut; Abdulkadir Şengür; Fikret Ata
The electrocardiogram (ECG) is a biological signal that contains important information about the cardiac activities of heart. ECG signal plays a very important role in the diagnosis and analysis of heart diseases. ECG signal is corrupted by various types of noise such as electrode movement, strong electromagnetic effect and muscle noise. Noisy ECG signal has been extracted using signal processing. This paper presents a weak ECG signal denoising method based on fuzzy thresholding and wavelet packet analysis. Firstly, the weak ECG signal is decomposed into various levels by wavelet packet transform. Then, the threshold value is determined using the fuzzy s-function. The reconstruction of the ECG signal from the retained coefficients is achieved by using inverse wavelet packet transform. We carried out several experiments to show the effectiveness of the proposed method and compared the results with the traditional wavelet packet soft and hard thresholding methods for weak signal denoising. The results are satisfactory according to calculated the correlation coefficient.
Computers & Electrical Engineering | 2014
Yanhui Guo; Abdulkadir Şengür
This study proposes a novel method to detect edge on clear or noisy images.The proposed approach performs well on images without noise or with different levels of noise.Neutrosophic set is employed to deal with uncertain information on image edge detection. Neutrosophic set (NS) theory is a formal framework to study the origin, nature, and scope of the neutral state. In this paper, neutrosophic set is applied in image domain and a new directional α-mean operation is defined. Based on this operation, neutrosophic set is applied into image edge detection procedure. First, the image is transformed into NS domain, which is described by three membership sets: T, I and F. Then, a directional α-mean operation is employed to reduce the indeterminacy of the image. Finally, a neutrosophic edge detection algorithm (NSED) is proposed based on the neutrosophic set and its operation to detect edge. Experiments have been conducted using numerous artificial and real images. The results demonstrate the NSED can detect the edges effectively and accurately. Particularly, it can remove the noise effect and detect the edges on both the noise-free images and the images with different levels of noises.
Neural Computing and Applications | 2017
Yanhui Guo; Rong Xia; Abdulkadir Şengür; Kemal Polat
This paper presents a novel image segmentation algorithm based on neutrosophic c-means clustering and indeterminacy filtering method. Firstly, the image is transformed into neutrosophic set domain. Then, a new filter, indeterminacy filter is designed according to the indeterminacy value on the neutrosophic image, and the neighborhood information is utilized to remove the indeterminacy in the spatial neighborhood. Neutrosophic c-means clustering is then used to cluster the pixels into different groups, which has advantages to describe the indeterminacy in the intensity. The indeterminacy filter is employed again to remove the indeterminacy in the intensity. Finally, the segmentation results are obtained according to the refined membership in the clustering after indeterminacy filtering operation. A variety of experiments are performed to evaluate the performance of the proposed method, and a newly published method neutrosophic similarity clustering (NSC) segmentation algorithm is utilized to compare with the proposed method quantitatively. The experimental results show that the proposed algorithm has better performances in quantitatively and qualitatively.
Lecture Notes in Computer Science | 2005
Abdulkadir Şengür; Ibrahim Turkoglu; M. Cevdet Ince
In this study, we carried out an unsupervised gray level image segmentation based on Markov Random Fields (MRF) model. First, we use the Expectation Maximization (EM) algorithm to estimate the distribution of the input image and the number of the components is automatically determined by the Minimum Message Length (MML) algorithm. Then the segmentation is done by the Iterated Conditional Modes (ICM) algorithm. For testing the segmentation performance, we use both artificial images and real images. The experimental results are satisfactory.
Symmetry | 2017
Yanhui Guo; Umit Budak; Abdulkadir Şengür; Florentin Smarandache
A fundus image is an effective tool for ophthalmologists studying eye diseases. Retinal vessel detection is a significant task in the identification of retinal disease regions. This study presents a retinal vessel detection approach using shearlet transform and indeterminacy filtering. The fundus image’s green channel is mapped in the neutrosophic domain via shearlet transform. The neutrosophic domain images are then filtered with an indeterminacy filter to reduce the indeterminacy information. A neural network classifier is employed to identify the pixels whose inputs are the features in neutrosophic images. The proposed approach is tested on two datasets, and a receiver operating characteristic curve and the area under the curve are employed to evaluate experimental results quantitatively. The area under the curve values are 0.9476 and 0.9469 for each dataset respectively, and 0.9439 for both datasets. The comparison with the other algorithms also illustrates that the proposed method yields the highest evaluation measurement value and demonstrates the efficiency and accuracy of the proposed method.
Applied Soft Computing | 2017
Yaman Akbulut; Abdulkadir Şengür; Yanhui Guo; Kemal Polat
Abstract Data clustering is an important step in data mining and machine learning. It is especially crucial to analyze the data structures for further procedures. Recently a new clustering algorithm known as ‘neutrosophic c-means’ (NCM) was proposed in order to alleviate the limitations of the popular fuzzy c-means (FCM) clustering algorithm by introducing a new objective function which contains two types of rejection. The ambiguity rejection which concerned patterns lying near the cluster boundaries, and the distance rejection was dealing with patterns that are far away from the clusters. In this paper, we extend the idea of NCM for nonlinear-shaped data clustering by incorporating the kernel function into NCM. The new clustering algorithm is called Kernel Neutrosophic c-Means (KNCM), and has been evaluated through extensive experiments. Nonlinear-shaped toy datasets, real datasets and images were used in the experiments for demonstrating the efficiency of the proposed method. A comparison between Kernel FCM (KFCM) and KNCM was also accomplished in order to visualize the performance of both methods. According to the obtained results, the proposed KNCM produced better results than KFCM.
health information science | 2017
Yanhui Guo; Shuangquan Jiang; Baiqing Sun; Siuly Siuly; Abdulkadir Şengür; Jiawei Tian
Recently, elastography has become very popular in clinical investigation for thyroid cancer detection and diagnosis. In elastogram, the stress results of the thyroid are displayed using pseudo colors. Due to variation of the rendering results in different frames, it is difficult for radiologists to manually select the qualified frame image quickly and efficiently. The purpose of this study is to find the qualified rendering result in the thyroid elastogram. This paper employs an efficient thyroid ultrasound image segmentation algorithm based on neutrosophic graph cut to find the qualified rendering images. Firstly, a thyroid ultrasound image is mapped into neutrosophic set, and an indeterminacy filter is constructed to reduce the indeterminacy of the spatial and intensity information in the image. A graph is defined on the image and the weight for each pixel is represented using the value after indeterminacy filtering. The segmentation results are obtained using a maximum-flow algorithm on the graph. Then the anatomic structure is identified in thyroid ultrasound image. Finally the rendering colors on these anatomic regions are extracted and validated to find the frames which satisfy the selection criteria. To test the performance of the proposed method, a thyroid elastogram dataset is built and totally 33 cases were collected. An experienced radiologist manually evaluates the selection results of the proposed method. Experimental results demonstrate that the proposed method finds the qualified rendering frame with 100% accuracy. The proposed scheme assists the radiologists to diagnose the thyroid diseases using the qualified rendering images.
health information science | 2017
Umit Budak; Abdulkadir Şengür; Yanhui Guo; Yaman Akbulut
Microaneurysms (MAs) are known as early signs of diabetic-retinopathy which are called red lesions in color fundus images. Detection of MAs in fundus images needs highly skilled physicians or eye angiography. Eye angiography is an invasive and expensive procedure. Therefore, an automatic detection system to identify the MAs locations in fundus images is in demand. In this paper, we proposed a system to detect the MAs in colored fundus images. The proposed method composed of three stages. In the first stage, a series of pre-processing steps are used to make the input images more convenient for MAs detection. To this end, green channel decomposition, Gaussian filtering, median filtering, back ground determination, and subtraction operations are applied to input colored fundus images. After pre-processing, a candidate MAs extraction procedure is applied to detect potential regions. A five-stepped procedure is adopted to get the potential MA locations. Finally, deep convolutional neural network (DCNN) with reinforcement sample learning strategy is used to train the proposed system. The DCNN is trained with color image patches which are collected from ground-truth MA locations and non-MA locations. We conducted extensive experiments on ROC dataset to evaluate of our proposal. The results are encouraging.
Axioms | 2017
Umit Budak; Yanhui Guo; Abdulkadir Şengür; Florentin Smarandache
Hough transform (HT) is a useful tool for both pattern recognition and image processing communities. In the view of pattern recognition, it can extract unique features for description of various shapes, such as lines, circles, ellipses, and etc. In the view of image processing, a dozen of applications can be handled with HT, such as lane detection for autonomous cars, blood cell detection in microscope images, and so on. As HT is a straight forward shape detector in a given image, its shape detection ability is low in noisy images. To alleviate its weakness on noisy images and improve its shape detection performance, in this paper, we proposed neutrosophic Hough transform (NHT). As it was proved earlier, neutrosophy theory based image processing applications were successful in noisy environments. To this end, the Hough space is initially transferred into the NS domain by calculating the NS membership triples (T, I, and F). An indeterminacy filtering is constructed where the neighborhood information is used in order to remove the indeterminacy in the spatial neighborhood of neutrosophic Hough space. The potential peaks are detected based on thresholding on the neutrosophic Hough space, and these peak locations are then used to detect the lines in the image domain. Extensive experiments on noisy and noise-free images are performed in order to show the efficiency of the proposed NHT algorithm. We also compared our proposed NHT with traditional HT and fuzzy HT methods on variety of images. The obtained results showed the efficiency of the proposed NHT on noisy images.