Abdullah Al Loman
University of Akron
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Abdullah Al Loman.
Enzyme and Microbial Technology | 2016
Abdullah Al Loman; Lu-Kwang Ju
Soy protein is a well-known nutritional supplement in proteinaceous food and animal feed. However, soybeans contain complex carbohydrate. Selective carbohydrate removal by enzymes could increase the protein content and remove the indigestibility of soy products for inclusion in animal feed. Complete hydrolysis of soy flour carbohydrates is challenging due to the presence of proteins and different types of non-structural polysaccharides. This study is designed to guide complex enzyme mixture required for hydrolysis of all types of soy flour carbohydrates. Enzyme broths from Aspergillus niger, Aspergillus aculeatus and Trichoderma reesei fermentations were evaluated in this study for soy carbohydrate hydrolysis. The resultant hydrolysate was measured for solubilized carbohydrate by both total carbohydrate and reducing sugar analyses. Conversion data attained after 48h hydrolysis were first fitted with models to determine the maximum fractions of carbohydrate hydrolyzable by each enzyme group, i.e., cellulase, xylanase, pectinase and α-galactosidase. Kinetic models were then developed to describe the increasing conversions over time under different enzyme activities and process conditions. The models showed high fidelity in predicting soy carbohydrate hydrolysis over broad ranges of soy flour loading (5-25%) and enzyme activities: per g soy flour, cellulase, 0.04-30 FPU; xylanase, 3.5-618U; pectinase, 0.03-120U; and α-galactosidase, 0.01-60U. The models are valuable in guiding the development and production of optimal enzyme mixtures toward hydrolysis of all types of carbohydrates present in soy flour and in optimizing the design and operation of hydrolysis reactor and process.
Archives of Oral Biology | 2015
Abdullah Al Loman; Lu-Kwang Ju
The aim of this study was to compare arabitol with its better studied isomer xylitol for their inhibitory effects on cell growth and acid production of oral bacteria. Streptococcus mutans, Streptococcus salivarius and Streptococcus sobrinus were used as representatives of oral streptococci and Lactobacillus acidophilus and Lactobacillus fermentum were used for oral lactobacilli. Growth was followed by measuring the absorbance at 660nm, acid production by pH change. Sensitivity of these oral bacteria to arabitol and xylitol was first compared at 1% (65mM) additive concentration with glucose as sugar substrate. For all bacteria tested, the inhibitory effects of the two polyols were comparable; both were significantly stronger on streptococci (with 20-60% inhibition) than on lactobacilli (with 5-10% inhibition). Effects of arabitol and xylitol were also compared for S. mutans and S. salivarius in media with 1% of different sugar substrates: glucose (55mM), fructose (55mM), galactose (55mM) and sucrose (30mM). Inhibition occurred for all sugars: stronger on glucose and galactose (60-65%) than on fructose and sucrose (40-45%). Inhibition dependency on the arabitol/xylitol concentration from 0.01% (0.65mM) to 2% (130mM) was further determined for S. mutans and S. salivarius. Regardless of the concentration, sugar substrate and bacterial species tested, arabitol showed very similar inhibition effects to its isomer xylitol.
Journal of Biotechnology | 2017
Qian Li; Abdullah Al Loman; Anthony M. Coffman; Lu-Kwang Ju
Soybean hull consists mainly of three major plant carbohydrates, i.e., cellulose, hemicellulose and pectin. It is inexpensive and a good potential substrate for carbohydrase production because it is capable of inducing a complete spectrum of activities to hydrolyze complex biomass. Aspergillus is known for carbohydrase production but no studies have evaluated and compared, among Aspergillus species and strains, the soybean hull induced production of various carbohydrases. In this study, A. aculeatus, A. cinnamomeus, A. foetidus, A. phoenicis and 11 A. niger strains were examined together with T. reesei Rut C30, another known carbohydrase producer. The carbohydrases evaluated included pectinase, polygalacturonase, xylanase, cellulase, α-galactosidase and sucrase. Growth morphology and pH profiles were also followed. Among Aspergillus strains, morphology was found to correlate with both carbohydrase production and pH decrease profile. Filamentous strains gave higher carbohydrase production while causing slower pH decrease. The enzyme broths produced were also tested for separation of soy flour carbohydrate and protein. Defatted soy flour contains about 53% protein and 32% carbohydrate. The enzymatic treatment can increase protein content and remove indigestible oligo-/poly-saccharides, and improve use of soy flour in feed and food. Protease production by different strains was therefore also compared for minimizing protein degradation. A. niger NRRL 322 and A. foetidus NRRL 341 were found to be the most potent strains that produced maximal carbohydrases and minimal protease under soybean hull induction.
Bioresource Technology | 2017
Abdullah Al Loman; S.M. Mahfuzul Islam; Qian Li; Lu-Kwang Ju
Despite having high protein and carbohydrate, soybean flour utilization is limited to partial replacement of animal feed to date. Enzymatic process can be exploited to increase its value by enriching protein content and separating carbohydrate for utilization as fermentation feedstock. Enzyme hydrolysis with fed-batch and recycle designs were evaluated here for achieving this goal with high productivities. Fed-batch process improved carbohydrate conversion, particularly at high substrate loadings of 250-375g/L. In recycle process, hydrolysate retained a significant portion of the limiting enzyme α-galactosidase to accelerate carbohydrate monomerization rate. At single-pass retention time of 6h and recycle rate of 62.5%, reducing sugar concentration reached up to 120g/L using 4ml/g enzyme. When compared with batch and fed-batch processes, the recycle process increased the volumetric productivity of reducing sugar by 36% (vs. fed-batch) to 57% (vs. batch) and that of protein product by 280% (vs. fed-batch) to 300% (vs. batch).
Enzyme and Microbial Technology | 2017
Abdullah Al Loman; Lu-Kwang Ju
Soybean is well known for its high-value oil and protein. Carbohydrate is, however, an underutilized major component, representing almost 26-30% (w/w) of the dried bean. The complex soybean carbohydrate is not easily hydrolyzable and can cause indigestibility when included in food and feed. Enzymes can be used to hydrolyze the carbohydrate for improving soybean processing and value of soybean products. Here the enzyme-based processing developed for the following purposes is reviewed: hydrolysis of different carbohydrate-rich by/products from soybean processing, improvement of soybean oil extraction, and increase of nutritional value of soybean-based food and animal feed. Once hydrolyzed into fermentable sugars, soybean carbohydrate can find more value-added applications and further improve the overall economics of soybean processing.
Enzyme and Microbial Technology | 2017
S.M. Mahfuzul Islam; Qian Li; Abdullah Al Loman; Lu-Kwang Ju
The high carbohydrate content of soybean hull makes it an attractive biorefinery resource. But hydrolyzing its complex structure requires concerted enzyme activities, at least cellulase, xylanase, pectinase and α-galactosidase. Effective pretreatment that generates minimal inhibitory products is important to facilitate enzymatic hydrolysis. Combined CO2-H2O pretreatment and enzymatic hydrolysis by Aspergillus niger and Trichoderma reesei enzyme broths was studied here. The pretreatment was evaluated at 80°C-180°C temperature and 750psi-1800psi pressure, with fixed moisture content (66.7%) and pretreatment time (30min). Ground hulls without and with different pretreatments were hydrolyzed by enzyme at 50°C and pH 4.8 and compared for glucose, xylose, galactose, arabinose, mannose and total reducing sugar release. CO2-H2O pretreatment at 1250psi and 130°C was found to be optimal. Compared to the unpretreated hulls hydrolyzed with 2.5-fold more enzyme, this pretreatment improved glucose, xylose, galactose, arabinose and mannose releases by 55%, 35%, 105%, 683% and 52%, respectively. Conversions of 97% for glucose, 98% for xylose, 41% for galactose, 59% for arabinose, 87% for mannose and 89% for total reducing sugar were achieved with Spezyme CP at 18FPU/g hull. Monomerization of all carbohydrate types was demonstrated. At the optimum pretreatment condition, generation of inhibitors acetic acid, furfural and hydroxymethylfurfural (HMF) was negligible, 1.5mg/g hull in total. The results confirmed the effective CO2-H2O pretreatment of soybean hulls at much lower pressure and temperature than those reported for biomass of higher lignin contents. The lower pressure requirement reduces the reactor cost and makes this new pretreatment method more practical and economical.
Bioresource Technology | 2018
S.M. Mahfuzul Islam; Abdullah Al Loman; Lu-Kwang Ju
Defatted soybean meal has 30-35% oligo-/polymeric carbohydrates and approximately 50% proteins. Enzymatic carbohydrate monomerization enables easy separation to enrich protein content, reduces indigestibility concerns, and facilitates use of carbohydrate as fermentation feedstock. Among soybean carbohydrates, pectin and glucan are more recalcitrant to hydrolyze. To destabilize Ca2+-bridged junctures in pectin, effects of 3 chelators ethylenediaminetetraacetic acid (EDTA), sodium hexametaphosphate (HMP) and citric acid under 2-h 90 °C pretreatments were investigated here. Citric acid was the most effective while EDTA decreased enzymatic hydrolysis. In a 3-factor 2-level factorial study, heat (90 °C, 2 h) and citric acid (10 g/L) pretreatments and cellulase supplementation (10 FPU/g) were found to increase yields of all monosaccharides, to 86.8 ± 5.2% glucose, 98.1 ± 1.6% xylose, 87.5 ± 5.2% galactose, 83.6 ± 1.6% arabinose, and 91.4 ± 3.1% fructose + mannose. The largest percentage improvements were for arabinose (382%), mannose (113%) and glucose (51%). Achieving high monosaccharide yields greatly increases value of soybean carbohydrate as fermentation feedstock.
Archive | 2015
Lu-Kwang Ju; Abdullah Al Loman; S.M. Mahfuzul Islam
α-Galactosidase is an enzyme that catalyzes hydrolysis of the terminal α-galactosyl moieties of oligosaccharides and polysaccharides. These saccharides are abundant in plants, particularly in legumes and vegetables that make up important sources of food and feed. Human and most monogastric animals may not synthesize enough amounts of α-galactosidase in gastrointestinal tracts to fully digest these galacto-saccharides in their diets. This indigestion can lead to various negative effects. α-Galactosidase has therefore been produced industrially and used for food/feed processing and in diet supplements. Here we provide basic descriptions of this enzyme, its substrate, temperature and pH conditions for good activities, and industrial production and applications in food/feed processing.
Process Biochemistry | 2016
Abdullah Al Loman; Lu-Kwang Ju
Bioprocess and Biosystems Engineering | 2016
Abdullah Al Loman; S.M. Mahfuzul Islam; Qian Li; Lu-Kwang Ju