Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Abdullah Alsuliman is active.

Publication


Featured researches published by Abdullah Alsuliman.


Blood | 2014

Regulatory B cells are enriched within the IgM memory and transitional subsets in healthy donors but are deficient in chronic GVHD

Ahmad Khoder; Anushruti Sarvaria; Abdullah Alsuliman; Claude Chew; Takuya Sekine; Nichola Cooper; Stephan Mielke; Hugues de Lavallade; Muharrem Muftuoglu; Irina Fernandez Curbelo; Enli Liu; Paolo A. Muraro; Amin M. Alousi; Kate Stringaris; Simrit Parmar; Nina Shah; Hila Shaim; Eric Yvon; Jeffrey J. Molldrem; Rayne H. Rouce; Richard E. Champlin; Ian McNiece; Claudia Mauri; Elizabeth J. Shpall; Katy Rezvani

A subset of regulatory B cells (Bregs) in mice negatively regulate T-cell immune responses through the secretion of regulatory cytokines such as IL-10 and direct cell-cell contact and have been linked to experimental models of autoimmunity, inflammation, and cancer. However, the regulatory function of Bregs in human disease is much less clear. Here we demonstrate that B cells with immunoregulatory properties are enriched within both the CD19(+)IgM(+)CD27(+) memory and CD19(+)CD24(hi)CD38(hi) transitional B-cell subsets in healthy human donors. Both subsets suppressed the proliferation and interferon-γ production of CD3/CD28-stimulated autologous CD4(+) T cells in a dose-dependent manner, and both relied on IL-10 secretion as well as cell-cell contact, likely mediated through CD80 and CD86, to support their full suppressive function. Moreover, after allogeneic stem cell transplantation, Bregs from patients with chronic graft-versus-host disease (cGVHD) were less frequent and less likely to produce IL-10 than were Bregs from healthy donors and patients without cGVHD. These findings suggest that Bregs may be involved in the pathogenesis of cGVHD and support future investigation of regulatory B cell-based therapy in the treatment of this disease.


Leukemia | 2012

KIR2DS1 genotype predicts for complete cytogenetic response and survival in newly diagnosed chronic myeloid leukemia patients treated with imatinib.

David Marin; Ian Gabriel; S. Ahmad; Letizia Foroni; H. De Lavallade; Richard E. Clark; Stephen G. O'Brien; Ruhena Sergeant; Corinne Hedgley; Dragana Milojkovic; Jamshid S. Khorashad; Marco Bua; Abdullah Alsuliman; Ahmad Khoder; Kate Stringaris; Nichola Cooper; J. Davis; John M. Goldman; Jane F. Apperley; Katy Rezvani

Natural killer (NK) cells are expanded in chronic myeloid leukemia (CML) patients on tyrosine kinase inhibitors (TKI) and exert cytotoxicity. The inherited repertoire of killer immunoglobulin-like receptors (KIR) may influence response to TKI. We investigated the impact of KIR-genotype on outcome in 166 chronic phase CML patients on first-line imatinib treatment. We validated our findings in an independent patient group. On multivariate analysis, KIR2DS1 genotype (RR=1.51, P=0.03) and Sokal risk score (low-risk RR=1, intermediate-risk RR=1.53, P=0.04, high-risk RR=1.69, P=0.034) were the only independent predictors for failure to achieve complete cytogenetic response (CCyR). Furthermore, KIR2DS1 was the only factor predicting shorter progression-free (PFS) (RR=3.1, P=0.03) and overall survival (OS) (RR=2.6, P=0.04). The association between KIR2DS1 and CCyR, PFS and OS was validated by KIR genotyping in 174 CML patients on first-line imatinib in the UK multi-center SPIRIT-1 trial; in this cohort, KIR2DS1(+) patients had significantly lower 2-year probabilities of achieving CCyR (76.9 vs 87.9%, P=0.003), PFS (85.3 vs 98.1%, P=0.007) and OS (94.4 vs 100%, P=0.015) than KIR2DS1(−) patients. The impact of KIR2DS1 on CCyR was greatest when the ligand for the corresponding inhibitory receptor, KIR2DL1, was absent (P=0.00006). Our data suggest a novel role for KIR-HLA immunogenetics in CML patients on TKI.


Blood | 2013

Tyrosine kinase inhibitors impair B-cell immune responses in CML through off-target inhibition of kinases important for cell signaling

Hugues de Lavallade; Ahmad Khoder; Melanie Hart; Anushruti Sarvaria; Takuya Sekine; Abdullah Alsuliman; Stephan Mielke; Alexandra Bazeos; Kate Stringaris; Sara Ali; Dragana Milojkovic; Letizia Foroni; Aristeidis Chaidos; Nichola Cooper; Ian Gabriel; Jane F. Apperley; Sarah L. Belsey; Robert J. Flanagan; John M. Goldman; Elizabeth J. Shpall; Peter Kelleher; David Marin; Katayoun Rezvani

Tyrosine kinase inhibitors (TKIs) have significant off-target multikinase inhibitory effects. We aimed to study the impact of TKIs on the in vivo B-cell response to vaccination. Cellular and humoral responses to influenza and pneumococcal vaccines were evaluated in 51 chronic phase chronic myeloid leukemia (CML) patients on imatinib, or second-line dasatinib and nilotinib, and 24 controls. Following vaccination, CML patients on TKI had significant impairment of IgM humoral response to pneumococcus compared with controls (IgM titer 79.0 vs 200 U/mL, P = .0006), associated with significantly lower frequencies of peripheral blood IgM memory B cells. To elucidate whether CML itself or treatment with TKI was responsible for the impaired humoral response, we assessed memory B-cell subsets in paired samples collected before and after imatinib therapy. Treatment with imatinib was associated with significant reductions in IgM memory B cells. In vitro coincubation of B cells with plasma from CML patients on TKI or with imatinib, dasatinib, or nilotinib induced significant and dose-dependent inhibition of Brutons tyrosine kinase and indirectly its downstream substrate, phospholipase-C-γ2, both important in B-cell signaling and survival. These data indicate that TKIs, through off-target inhibition of kinases important in B-cell signaling, reduce memory B-cell frequencies and induce significant impairment of B-cell responses in CML.


Blood | 2010

Interaction between KIR3DS1 and HLA-Bw4 predicts for progression-free survival after autologous stem cell transplantation in patients with multiple myeloma.

Ian Gabriel; Ruhena Sergeant; Richard Szydlo; Jane F. Apperley; Hugues DeLavallade; Abdullah Alsuliman; Ahmad Khoder; David Marin; Edward Kanfer; Nichola Cooper; John Davis; Donald Macdonald; Marco Bua; Letizia Foroni; Chrissy Giles; Dragana Milojkovic; Amin Rahemtulla; Katayoun Rezvani

Natural killer (NK) cells exert antimyeloma cytotoxicity. The balance between inhibition and activation of NK-cells played by the inherited repertoire of killer immunoglobulin-like receptor (KIR) genes therefore may influence prognosis. One hundred eighty-two patients with multiple myeloma (MM) were analyzed for KIR repertoire. Multivariate analysis showed that progression-free survival (PFS) after autologous stem cell transplantation (ASCT) was significantly shorter for patients who are KIR3DS1(+) (P = .01). This was most evident for patients in complete or partial remission (good risk; GR) at ASCT. The relative risk (RR) of progression or death for patients with KIR3DS1(+) compared with KIR3DS1(-) was 1.9 (95% CI, 1.3-3.1; P = .002). The most significant difference in PFS was observed in patients with GR KIR3DS1(+) in whom HLA-Bw4, the ligand for the corresponding inhibitory receptor KIR3DL1, was missing. Patients with KIR3DS1(+) KIR3DL1(+) HLA-Bw4(-) had a significantly shorter PFS than patients who were KIR3DS1(-), translating to a difference in median PFS of 12 months (12.2 vs 24 months; P = .002). Our data show that KIR-human leukocyte antigen immunogenetics represent a novel prognostic tool for patients with myeloma, shown here in the context of ASCT, and that KIR3DS1 positivity may identify patients at greater risk of progression.


Blood | 2016

IL-10+ regulatory B cells are enriched in cord blood and may protect against cGVHD after cord blood transplantation

Anushruti Sarvaria; Rafet Basar; Hila Shaim; Muharrem Muftuoglu; Ahmad Khoder; Takuye Sekine; Elif Gokdemir; Kayo Kondo; David Marin; May Daher; Amin M. Alousi; Abdullah Alsuliman; Enli Liu; Betul Oran; Amanda Olson; Roy B. Jones; Uday Popat; Chitra Hosing; Richard E. Champlin; Elizabeth J. Shpall; Katayoun Rezvani

Cord blood (CB) offers a number of advantages over other sources of hematopoietic stem cells, including a lower rate of chronic graft-versus-host disease (cGVHD) in the presence of increased HLA disparity. Recent research in experimental models of autoimmunity and in patients with autoimmune or alloimmune disorders has identified a functional group of interleukin-10 (IL-10)-producing regulatory B cells (Bregs) that negatively regulate T-cell immune responses. At present, however, there is no consensus on the phenotypic signature of Bregs, and their prevalence and functional characteristics in CB remain unclear. Here, we demonstrate that CB contains an abundance of B cells with immunoregulatory function. Bregs were identified in both the naive and transitional B-cell compartments and suppressed T-cell proliferation and effector function through IL-10 production as well as cell-to-cell contact involving CTLA-4. We further show that the suppressive capacity of CB-derived Bregs can be potentiated through CD40L signaling, suggesting that inflammatory environments may induce their function. Finally, there was robust recovery of IL-10-producing Bregs in patients after CB transplantation, to higher frequencies and absolute numbers than seen in the peripheral blood of healthy donors or in patients before transplant. The reconstituting Bregs showed strong in vitro suppressive activity against allogeneic CD4(+) T cells, but were deficient in patients with cGVHD. Together, these findings identify a rich source of Bregs and suggest a protective role for CB-derived Bregs against cGVHD development in CB recipients. This advance could propel the development of Breg-based strategies to prevent or ameliorate this posttransplant complication.


Blood | 2016

Specific combinations of donor and recipient KIR-HLA genotypes predict for large differences in outcome after cord blood transplantation

Takuya Sekine; David Marin; Kai Cao; Li Li; Pramod Mehta; Hila Shaim; Catherine Sobieski; Roy B. Jones; Betul Oran; Chitra Hosing; Gabriela Rondon; Abdullah Alsuliman; Silke Paust; Borje S. Andersson; Uday Popat; Partow Kebriaei; Muharrem Muftuoglu; Rafet Basar; Kayo Kondo; Yago Nieto; Nina Shah; Amanda Olson; Amin M. Alousi; Enli Liu; Anushruti Sarvaria; Simrit Parmar; Darius Armstrong-James; Nobuhiko Imahashi; Jeffrey J. Molldrem; Richard E. Champlin

The ability of cord blood transplantation (CBT) to prevent relapse depends partly on donor natural killer (NK) cell alloreactivity. NK effector function depends on specific killer-cell immunoglobulin-like receptors (KIR) and HLA interactions. Thus, it is important to identify optimal combinations of KIR-HLA genotypes in donors and recipients that could improve CBT outcome. We studied clinical data, KIR and HLA genotypes, and NK-cell reconstitution in CBT patients (n = 110). Results were validated in an independent cohort (n = 94). HLA-KIR genotyping of recipient germline and transplanted cord blood (CB) grafts predicted for large differences in outcome. Patients homozygous for HLA-C2 group alleles had higher 1-year relapse rate and worse survival after CBT than did HLA-C1/C1 or HLA-C1/C2 (HLA-C1/x) patients: 67.8% vs 26.0% and 15.0% vs 52.9%, respectively. This inferior outcome was associated with delayed posttransplant recovery of NK cells expressing the HLA-C2-specific KIR2DL1/S1 receptors. HLA-C1/x patients receiving a CB graft with the combined HLA-C1-KIR2DL2/L3/S2 genotype had lower 1-year relapse rate (6.7% vs 40.1%) and superior survival (74.2% vs 41.3%) compared with recipients of grafts lacking KIR2DS2 or HLA-C1 HLA-C2/C2 patients had lower relapse rate (44.7% vs 93.4%) and better survival (30.1% vs 0%) if they received a graft with the combined HLA-C2-KIR2DL1/S1 genotype. Relapsed/refractory disease at CBT, recipient HLA-C2/C2 genotype, and donor HLA-KIR genotype were independent predictors of outcome. Thus, we propose the inclusion of KIR genotyping in graft selection criteria for CBT. HLA-C1/x patients should receive an HLA-C1-KIR2DL2/L3/S2 CB graft, while HLA-C2/C2 patients may benefit from an HLA-C2-KIR2DL1/S1 graft.


JCI insight | 2017

ALS patients’ regulatory T lymphocytes are dysfunctional, and correlate with disease progression rate and severity

David R. Beers; Weihua Zhao; Jinghong Wang; Xiujun Zhang; Shixiang Wen; Dan Neal; Jason Thonhoff; Abdullah Alsuliman; Elizabeth J. Shpall; Katy Rezvani; Stanley H. Appel

Neuroinflammation is a pathological hallmark of ALS in both transgenic rodent models and patients, and is characterized by proinflammatory T lymphocytes and activated macrophages/microglia. In ALS mouse models, decreased regulatory T lymphocytes (Tregs) exacerbate the neuroinflammatory process, leading to accelerated motoneuron death and shortened survival; passive transfer of Tregs suppresses the neuroinflammation and prolongs survival. Treg numbers and FOXP3 expression are also decreased in rapidly progressing ALS patients. A key question is whether the marked neuroinflammation in ALS can be attributed to the impaired suppressive function of ALS Tregs in addition to their decreased numbers. To address this question, T lymphocyte proliferation assays were performed. Compared with control Tregs, ALS Tregs were less effective in suppressing responder T lymphocyte proliferation. Although both slowly and rapidly progressing ALS patients had dysfunctional Tregs, the greater the clinically assessed disease burden or the more rapidly progressing the patient, the greater the Treg dysfunction. Epigenetically, the percentage methylation of the Treg-specific demethylated region was greater in ALS Tregs. After in vitro expansion, ALS Tregs regained suppressive abilities to the levels of control Tregs, suggesting that autologous passive transfer of expanded Tregs might offer a novel cellular therapy to slow disease progression.


Cytotherapy | 2016

A robust, good manufacturing practice–compliant, clinical-scale procedure to generate regulatory T cells from patients with amyotrophic lateral sclerosis for adoptive cell therapy

Abdullah Alsuliman; Stanley H. Appel; David R. Beers; Rafet Basar; Hila Shaim; Indresh Kaur; Jane Zulovich; Eric Yvon; Muharrem Muftuoglu; Nobuhiko Imahashi; Kayo Kondo; Enli Liu; Elizabeth J. Shpall; Katayoun Rezvani

Regulatory T cells (Tregs) play a fundamental role in the maintenance of self-tolerance and immune homeostasis. Defects in Treg function and/or frequencies have been reported in multiple disease models. Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder affecting upper and lower motor neurons. Compelling evidence supports a neuroprotective role for Tregs in this disease. Indeed, rapid progression in ALS patients is associated with decreased FoxP3 expression and Treg frequencies. Thus, we propose that strategies to restore Treg number and function may slow disease progression in ALS. In this study, we developed a robust, Good Manufacturing Practice (GMP)-compliant procedure to enrich and expand Tregs from ALS patients. Tregs isolated from these patients were phenotypically similar to those from healthy individuals but were impaired in their ability to suppress T-cell effector function. In vitro expansion of Tregs for 4 weeks in the presence of GMP-grade anti-CD3/CD28 beads, interleukin (IL)-2 and rapamcyin resulted in a 25- to 200-fold increase in their number and restored their immunoregulatory activity. Collectively, our data facilitate and support the implementation of clinical trials of adoptive therapy with ex vivo expanded and highly suppressive Tregs in patients with ALS.


Blood | 2017

A subset of virus-specific CD161+ T cells selectively express the multidrug transporter MDR1 and are resistant to chemotherapy in AML

Abdullah Alsuliman; Muharrem Muftuoglu; Ahmad Khoder; Yong Oon Ahn; Rafet Basar; Michael R. Verneris; Pawel Muranski; A. John Barrett; Enli Liu; Li Li; Kate Stringaris; Darius Armstrong-James; Hila Shaim; Kayo Kondo; Nobuhiko Imahashi; Borje S. Andersson; David Marin; Richard E. Champlin; Elizabeth J. Shpall; Katayoun Rezvani

The establishment of long-lived pathogen-specific T cells is a fundamental property of the adaptive immune response. However, the mechanisms underlying long-term persistence of antigen-specific CD4+ T cells are not well-defined. Here we identify a subset of memory CD4+ T cells capable of effluxing cellular toxins, including rhodamine (Rho), through the multidrug efflux protein MDR1 (also known as P-glycoprotein and ABCB1). Drug-effluxing CD4+ T cells were characterized as CD161+CD95+CD45RA-CD127hiCD28+CD25int cells with a distinct chemokine profile and a Th1-polarized pro-inflammatory phenotype. CD4+CD161+Rho-effluxing T cells proliferated vigorously in response to stimulation with anti-CD3/CD28 beads and gave rise to CD161- progeny in vitro. These cells were also capable of self-renewal and maintained their phenotypic and functional characteristics when cultured with homeostatic cytokines. Multidrug-effluxing CD4+CD161+ T cells were enriched within the viral-specific Th1 repertoire of healthy donors and patients with acute myeloid leukemia (AML) and survived exposure to daunorubicin chemotherapy in vitro. Multidrug-effluxing CD4+CD161+ T cells also resisted chemotherapy-induced cytotoxicity in vivo and underwent significant expansion in AML patients rendered lymphopenic after chemotherapy, contributing to the repopulation of anti-CMV immunity. Finally, after influenza vaccination, the proportion of influenza-specific CD4+ T cells coexpressing CD161 was significantly higher after 2 years compared with 4 weeks after immunization, suggesting CD161 is a marker for long-lived antigen-specific memory T cells. These findings suggest that CD4+CD161+ T cells with rapid efflux capacity contribute to the maintenance of viral-specific memory T cells. These data provide novel insights into mechanisms that preserve antiviral immunity in patients undergoing chemotherapy and have implications for the development of novel immunotherapeutic approaches.


Blood | 2012

Dasatinib may overcome the negative prognostic impact of KIR2DS1 in newly diagnosed patients with chronic myeloid leukemia

Sara Ali; Ruhena Sergeant; Stephen G. O'Brien; Letizia Foroni; Corinne Hedgley; Gareth Gerrard; Dragana Milojkovic; Kate Stringaris; Ahmad Khoder; Abdullah Alsuliman; Maria Gilleece; Ian Gabriel; Nichola Cooper; John M. Goldman; Jane F. Apperley; Richard E. Clark; David Marin; Katayoun Rezvani

To the editor: Most chronic myeloid leukemia (CML) patients achieve complete cytogenetic response (CCyR) with tyrosine kinase inhibitors (TKI).[1][1] However, many relapse on therapy discontinuation.[2][2] The curative effect of allogeneic stem cell transplantation (allo-SCT) in CML is believed to

Collaboration


Dive into the Abdullah Alsuliman's collaboration.

Top Co-Authors

Avatar

Katayoun Rezvani

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Ahmad Khoder

Imperial College London

View shared research outputs
Top Co-Authors

Avatar

David Marin

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Elizabeth J. Shpall

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Enli Liu

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Muharrem Muftuoglu

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hila Shaim

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Takuya Sekine

University of Texas MD Anderson Cancer Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge