Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Abdullah G. Al-Sehemi is active.

Publication


Featured researches published by Abdullah G. Al-Sehemi.


Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy | 2013

Quantum chemical study of the donor-bridge-acceptor triphenylamine based sensitizers.

Ahmad Irfan; Ruifa Jin; Abdullah G. Al-Sehemi; Abdullah M. Asiri

Quantum chemical calculations were carried to investigate the electron coupling, electron injection, electronic and photophysical properties of 2-cyano-5-(4-(phenyl(4-vinylphenyl)amino)phenyl) penta-2,4-dienoic acid (TC4) and its derivatives. Geometries have been optimized by using density functional theory at B3LYP/6-31G(**) level of theory. The highest occupied molecular orbitals (HOMOs) are delocalized on triphenylamine (TPA) units while lowest unoccupied molecular orbitals LUMOs are localized on anchoring groups. The mono-methyl is more significant to lowering the energy gap than di and tri-methyl substituted ones. The HOMOs of the dyes are below the redox couple and LUMOs are above the conduction band of TiO2. We have explained the recombination barrier on the basis of distortion and coplanarity. The excitation energies have been computed by time dependent density functional theory at PCM-CAM-B3LYP/6-31G(**) level of theory. Enhanced bridge is encouraging to promote the electron injection, electronic coupling constant and light harvesting efficiency. Generally, electron injection, electronic coupling constant and light harvesting efficiency of new designed sensitizers are higher than TC4. This revealed that new materials would be efficient photosensitizers.


Journal of Materials Chemistry C | 2013

Quantum chemical design of nonlinear optical materials by sp2-hybridized carbon nanomaterials: issues and opportunities

Shabbir Muhammad; Hong-Liang Xu; Rong-Lin Zhong; Zhong-Min Su; Abdullah G. Al-Sehemi; Ahmad Irfan

Nonlinear optical (NLO) materials are the smartest materials of the era, and have the ability to generate new electromagnetic fields with changed frequencies, phases, and other physical properties. Recently, many cutting edge research reports have been focused on NLO materials especially on those which are composed of sp2 hybridized carbon nanostructures. As the carbon nanostructures are composed of abundant π-electrons and have significant delocalization, these are potential candidates for modern NLO materials. Generally, sp2 hybridized carbon nanostructures can be divided into zero-dimensional fullerenes, one-dimensional nanotubes and two-dimensional graphene nanoribbons and quantum dots etc. These dimensionally different carbon nanomaterials are promising candidates for a wide range of applications in next-generation nanotechnologies. In present feature article, we first briefly explain a theoretical structure–NLO property relationship based on perturbation theory and then elucidate the crucial factors to control the NLO responses. We put together the different random investigations of sp2 hybridized carbon nanostructures for NLO application by highlighting the importance of their several structural designs to tune NLO amplitudes. Furthermore, we make a comparative and updated analysis of the NLO properties of dimensionally different sp2 hybridized carbon nanomaterials i.e. fullerenes, carbon nanotubes, and graphene nanoribbons and quantum dots. Finally, we make a brief discussion about different aspects and opportunities to use the sp2 hybridized carbon nanomaterials as high performance NLO materials of the future. This review is a focused perspective based on different updated quantum chemical investigations about fullerenes, nanotubes and graphene nanoribbons and quantum dots for their possible use in nonlinear optical applications.


Theoretical Chemistry Accounts | 2012

The DFT investigations of the electron injection in hydrazone-based sensitizers

Abdullah G. Al-Sehemi; Ahmad Irfan; Abdullah M. Asiri

Quantum chemical calculations were carried out by using density functional theory and time-dependant density functional theory at B3LYP/6-31G(d) and TD-B3LYP/6-31G(d) level of theories. The absorption spectra have been computed with and without solvent. The calculated absorption spectra in ethanol, acetonitrile, and methanol are in good agreement with experimental evidences. The absorption spectra are red shifted compared to System1. On the basis of electron injection and electronic coupling constant, we have shed light on the nature of different sensitizers. The coplanarity between the benzene near anchoring group having LUMO and the bridge (N–N) is broken in System6 and System7 that would hamper the recombination process. The electron injection of System2–System10 is superior to System1. The highest electronic coupling constant has been observed for System6 that followed the System7 and System8. The light-harvesting efficiency of all the sensitizers enlarged in acetonitrile and ethanol. The long-range-corrected functional (LC-BLYP), Coulomb-attenuating method (CAM-B3LYP), and BH and HLYP functional underestimate the excitation energies while B3LYP is good to reproduce the experimental data. Moreover, we have investigated the effect of cyanoacetic acid as anchoring group on the electron injection.


Journal of Molecular Modeling | 2012

Quantum chemical investigations aimed at modeling highly efficient zinc porphyrin dye sensitized solar cells

Ahmad Irfan; Naz Hina; Abdullah G. Al-Sehemi; Abdullah M. Asiri

AbstractZinc tetraphenylporphyrin (ZnTPP) was modified by a push-pull strategy and then density functional theory (DFT) and time-dependent DFT (TD-DFT) calculations were performed for the resulting derivatives. The smallest HOMO–LUMO energy gaps were found in ZnTPP-6 and ZnTPP-7, which had nitro substituents and a conjugated chain, while the largest was observed for ZnTPP-5. The energy gaps of all of the systems designed in this work were smaller than that of ZnTPP. Clear intramolecular charge transfer was observed from donor to acceptor in ZnTPP-6 and ZnTPP-7, which had nitro groups at positions R8, R9, and R10, as well as in ZnTPP-3 and ZnTPP-4, which had cyano groups at those positions. The narrow band gaps (compared to that of ZnTPP) of these designed systems, where the LUMO is above the conduction band of TiO2 and the HOMO is below the redox couple, indicate that they are efficient sensitizers. The B bands of these newly designed derivatives, except for ZnTPP-5, are redshifted compared with the B band of ZnTPP. FigureThe comprehensive intra charge transfer has been observed from highest occupied molecular orbitals to lowest unoccupied molecular orbitals. The LUMO of the designed systems lying above the conduction band of TiO2 and HOMO below the redox couple as well as the narrow band gap compared to ZnTPP showed that new designed materials would be efficient sensitizers.


Australian Journal of Chemistry | 2011

Packing Effect on the Transfer Integrals and Mobility in α,α′-bis(dithieno[3,2-b:2′,3′-d]thiophene) (BDT) and its Heteroatom-Substituted Analogues

Ahmad Irfan; Abdullah G. Al-Sehemi; Shabbir Muhammad; Jingping Zhang

Theoretically calculated mobility has revealed that BDT is a hole transfer material, which is in good agreement with experimental investigations. The BDT, NHBDT, and OBDT are predicted to be hole transfer materials in the C2/c space group. Comparatively, hole mobility of BHBDT is 7 times while electron mobility is 20 times higher than the BDT. The packing effect for BDT and designed crystals was investigated by various space groups. Generally, mobility increases in BDT and its analogues by changing the packing from space group C2/c to space groups P1 or . In the designed ambipolar material, BHBDT hole mobility has been predicted 0.774 and 3.460 cm2 Vs–1 in space groups P1 and , which is 10 times and 48 times higher than BDT (0.075 and 0.072 cm2 Vs–1 in space groups P1 and ), respectively. Moreover, the BDT behaves as an electron transfer material by changing the packing from the C2/c space group to P1 and .


Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy | 2012

Synthesis, characterization and DFT study of methoxybenzylidene containing chromophores for DSSC materials.

Abdullah G. Al-Sehemi; Ahmad Irfan; Abdullah M. Asiri; Y. A. Ammar

Novel tricyanovinyl derived from hydrazones have been prepared by the reaction of tetracyanoethylene and phenylethylidene hydrazone, and these dyes showed absorption in the region of 539-650 nm. The dyes showed pronounced solvatochromic effects as the polarity of the solvents changed. The torsion in E isomer is smaller than Z and azo isomers of MBD1 and MBD2. The HOMOs are delocalized on whole of the molecule while LUMOs are distributed on the tricarbonitrile. The LUMO energies are above the conduction band of TiO(2) and HOMOs of the dyes are below the redox couple of MBD1 and MBD2. The HOMO energies, LUMO energies and HOMO-LUMO energy gap of MBD1 and MBD2 are almost same. The absorption spectra of both the dyes in different solvents are approximately same except in cyclohexane.


Journal of Molecular Graphics & Modelling | 2013

Modeling of multifunctional donor-bridge-acceptor 4,6-di(thiophen-2-yl)pyrimidine derivatives: A first principles study

Ahmad Irfan; Abdullah G. Al-Sehemi; Mohammad Sultan Al-Assiri

We have modeled multifunctional compounds by pi-elongation and push-pull strategy from the 4,6-di(thiophen-2-yl)pyrimidine. The ground state geometries have been optimized by density functional theory while excited state geometries were optimized by time dependent density functional theory (TDDFT). Structure-property relationship, electronic, optical and charge transfer properties (ionization potential, electron affinity and reorganization energies) were computed and discussed. By TDDFT absorption and emission have been calculated. The computed parameters were compared with available experimental data. The long-range corrected functional (LC-BLYP) is overestimating the highest occupied and lowest unoccupied molecular orbital energies, energy gaps while underestimating the absorption and fluorescence wavelengths. The B3LYP is good to reproduce the experimental data. The intra-molecular charge transfer has been observed from highest occupied molecular orbitals to lowest unoccupied molecular orbitals. The strong electron withdrawing and electron donor groups efficiently reduce the energy gaps. The decrease injection barrier and smaller reorganization energies are revealing that our designed derivatives would be efficient hole as well as electron transfer materials. These derivatives would be good light emitters e.g. blue, green, orange, red and near IR. The predicted values showed that the designed derivatives would be efficient for the organic field effect transistors, photovoltaics and light emitters.


Structural Chemistry | 2013

Electronic, optical, and charge transfer properties of donor–bridge–acceptor hydrazone sensitizers

Abdullah G. Al-Sehemi; Mohrah Abdullah M. Al-Melfi; Ahmad Irfan

The ground state geometries have been computed by using density functional theory (DFT) at B3LYP/6-31G*, B3LYP/6-31G**, and PCM-B3LYP/6-31G* level of theories. The highest occupied molecular orbitals (HOMOs) are delocalized on whole of the molecule and the lowest unoccupied molecular orbitals (LUMOs) are localized on the tricarbonitrile. The lowest HOMO and LUMO energies have been observed for Dye1 while highest for Dye4. The LUMO energies of Dye1–Dye4 are above the conduction band of TiO2 and HOMOs are below the redox couple. The absorption spectra have been computed in solvent (methanol) and without solvent by using time-dependant DFT at TD-B3LYP/6-31G*, TD-B3LYP/6-31G**, and PCM-TD-B3LYP/6-31G* level of theories. The calculated maximum absorption wavelengths of the spectra in methanol are in good agreement with experimental evidences. The maximum absorption wavelengths of new designed sensitizers are red shifted compared to parent molecule. The electronic coupling constant and electron injection have been computed by first principle investigations. The improved electronic coupling constant and electron injection revealed that new modeled systems would be efficient sensitizers.


Journal of Computational Chemistry | 2015

How does hybrid bridging core modification enhance the nonlinear optical properties in donor-π-acceptor configuration? A case study of dinitrophenol derivatives

Shabbir Muhammad; Ahmad Irfan; Mohd. Shkir; Aijaz Rasool Chaudhry; Abul Kalam; S. AlFaify; Abdullah G. Al-Sehemi; A. E. Al-Salami; I.S. Yahia; Hong-Liang Xu; Zhong-Min Su

This study spotlights the fundamental insights about the structure and static first hyperpolarizability (β) of a series of 2,4‐dinitrophenol derivatives (1–5), which are designed by novel bridging core modifications. The central bridging core modifications show noteworthy effects to modulate the optical and nonlinear optical properties in these derivatives. The derivative systems show significantly large amplitudes of first hyperpolarizability as compared to parent system 1, which are 4, 46, 66, and 90% larger for systems 2, 3, 4, and 5, respectively, at Moller–Plesset (MP2)/6‐31G* level of theory. The static first hyperpolarizability and frequency dependent coupled‐perturbed Kohn–Sham first hyperpolarizability are calculated by means of MP2 and density functional theory methods and compared with respective experimental values wherever possible. Using two‐level model with full‐set of parameters dependence of transition energy (ΔΕ), transition dipole moment (μ0) as well as change in dipole moment from ground to excited state (Δμ), the origin of increase in β amplitudes is traced from the change in dipole moment from ground to excited state. The causes of change in dipole moments are further discovered through sum of Mulliken atomic charges and intermolecular charge transfer spotted in frontier molecular orbitals analysis. Additionally, analysis of conformational isomers and UV‐Visible spectra has been also performed for all designed derivatives. Thus, our present investigation provides novel and explanatory insights on the chemical nature and origin of intrinsic nonlinear optical (NLO) properties of 2,4‐dinitrophenol derivatives.


Journal of Molecular Graphics & Modelling | 2016

Tuning the push–pull configuration for efficient second-order nonlinear optical properties in some chalcone derivatives

Shabbir Muhammad; Abdullah G. Al-Sehemi; Ahmad Irfan; Aijaz Rasool Chaudhry

Using the density functional theory methods, we effectively tune the second-order nonlinear optical (NLO) properties in some chalcone derivatives. Various unique push-pull configurations are used to efficiently enhance the intramolecular charge transfer process over the designed derivatives, which result in significantly larger amplitudes of the first hyperpolarizability as compared to their parent molecule. The ground state molecular geometries have been optimized using B3LYP/6-311G** level of theory. A variety of methods including B3LYP, CAM-B3LYP, PBE0, M06, BHandHLYP and MP2 are tested with 6-311G** basis set to calculate the first hyperpolarizability of parent system 1. The results of M06 are found closer to highly correlated MP2 method, which has been selected to calculate static and frequency dependent first hyperpolarizability amplitudes of all selected systems. At M06/6-311G** level of theory, the permanent electronic dipole moment (μtot), polarizability (α0) and static first hyperpolarizability (βtot) amplitudes for parent system 1 are found to be 5.139 Debye, 274a. u. and 24.22×10(-30)esu, respectively. These amplitudes have been significantly enhanced in designed derivatives 2 and 3. More importantly, the (βtot) amplitudes of systems 2 and 3 mount to 75.78×10(-30) and 128.51×10(-30)esu, respectively, which are about 3 times and 5 times larger than that of their parent system 1. Additionally, we have extended the structure-NLO property relationship to several newly synthesized chalcone derivatives. Interestingly, the amplitudes of dynamic frequency dependent hyperpolarizability μβω (SHG) are also significantly larger having values of 366.72×10(-48), 856.32×10(-48) and 1913.46×10(-48)esu for systems 1-3, respectively, at 1400nm of incident laser wavelength. The dispersion behavior over a wide range of change in wavelength has also been studied adopting a range of wavelength from 1907 to 544nm. Thus, the present work realizes the potential of designed derivatives as efficient NLO-phores for modern NLO applications.

Collaboration


Dive into the Abdullah G. Al-Sehemi's collaboration.

Top Co-Authors

Avatar

Ahmad Irfan

King Khalid University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Abul Kalam

King Khalid University

View shared research outputs
Top Co-Authors

Avatar

F. Yakuphanoglu

King Abdulaziz University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge