Abdullah H. Al-Assaf
King Saud University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Abdullah H. Al-Assaf.
Nutrition Research | 2010
Ali A. Alshatwi; Manal A. Al Obaaid; Sahar A. Al Sedairy; Abdullah H. Al-Assaf; Jun Jun Zhang; Kai Y. Lei
The hypothesis that tomato powder (TP) is more protective than lycopene-beadlet (LB) treatment in rats fed with or without H(2)O(2) was tested by comparing their beneficial effects on serum and hepatic lipids, peroxidation product (malondialdehyde [MDA]), and serum lipoproteins. In groups receiving no H(2)O(2), TP and LB similarly lowered MDA, a major lipid peroxidation product, moderately in the serum but markedly in the liver, more than their respective controls. Hydrogen peroxide consumption elevated liver and serum MDA levels similarly among all treatments, but induced no increase in serum MDA for the TP group, which indicated a stronger protection against lipid peroxidation by TP than by LB treatment. Although the TP and LB diets provided equal amounts of lycopene, serum, and liver lycopene levels for treatments with or without H(2)O(2), they were markedly elevated in TP but still higher in LB group than controls. This indicated a greater lycopene bioavailability in LB than TP. Importantly, TP and LB treatments with or without H(2)O(2) consumption lowered serum total cholesterol and triglycerides by one fifth, as well as decreased serum low-density lipoprotein cholesterol by more than one third of their respective levels in controls. Similarly, liver total cholesterol was markedly lowered (>1/3) by TP or LB treatment, but liver triglycerides were lowered to one fourth by only TP treatment, of the levels in their respective controls. Thus, TP appeared to be more protective because of its additional ability to prevent the H(2)O(2)-induced rise in serum MDA and seemed to lower liver triglycerides more than LB treatment.
World Journal of Gastroenterology | 2013
Salim S. Al-Rejaie; Hatem M. Abuohashish; Maher M Al-Enazi; Abdullah H. Al-Assaf; Mihir Y. Parmar; Mohammed M. Ahmed
AIM To evaluate the ameliorative effect of naringenin (NG) during ulcerative colitis (UC) in rats. METHODS Rats were treated with three different doses (25, 50 and 100 mg/kg per day) of NG and a single dose of mesalazine (MES, 300 mg/kg per day) for seven days prior to ulcerative colitis induction by 4% acetic acid (AA). Twenty four hours after AA rectal administration, animals were scarified and the colonic tissues were dissected. Colonic mucus content was estimated using Alcian blue dye binding technique. In colon tissues, levels of total glutathione sulphadryls (T-GSH), non-protein sulphadryls (NP-SH) and thiobarbituric acid reactive substances (TBARS) were evaluated. The activities of the antioxidant enzymes, catalase (CAT) and superoxide dismutase (SOD) were measured. Concentrations of nucleic acids (DNA and RNA) and total protein were also estimated in colon tissues. Colonic levels of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6), prostaglandin E2 (PGE2) and nitric oxide (NO) were estimated. In cross section of colitis tissue the histopathological changes were observed. RESULTS Colonic mucus content was decreased in AA compared to controls (587.09 ± 65.59 mg/kg vs 941.78 ± 68.41 mg/kg, P < 0.001). AA administration markedly reduced T-GSH (5.25 ± 0.37 nmol/L vs 3.04 ± 0.24 nmol/L, P < 0.01), NP-SH (3.16 ± 0.04 nmol/L vs 2.16 ± 0.30 nmol/L, P < 0.01), CAT (6.77 ± 0.40 U/mg vs 3.04 ± 0.2 U/mg, P < 0.01) and SOD (3.10 ± 0.11 U/mg vs 1.77 ± 0.18 U/mg, P < 0.01) while TBARS, TNF-α, IL-1β, IL-6, PGE2 and NO levels (15.09 ± 3.84 nmol/L vs 59.90 ± 16.34 nmol/L, P < 0.01; 113.56 ± 1.91 pg/mg vs 134.24 ± 4.77 pg/mg, P < 0.01; 209.20 ± 36.38 pg/mg vs 422.19 ± 31.47 pg/mg, P < 0.01; 250.83 ± 25.09 pg/mg vs 638.58 ± 115.9 pg/mg, P < 0.01; 248.19 ± 36.98 pg/mg vs 541.74 ± 58.34 pg/mg, P < 0.01 and 81.26 ± 2.98 mmol/g vs 101.90 ± 10.73 mmol/g, P < 0.001) were increased in colon of rats with UC compared controls respectively.Naringenin supplementation, significantly and dose dependently increased the colonic mucus content. The elevated TBARS levels were significantly decreased (39.35 ± 5.86 nmol/L, P < 0.05; 26.74 ± 3.17 nmol/L, P < 0.01 nmol/L and 17.74 ± 2.69 nmol/L, P < 0.01) compared to AA (59.90 ± 16.34 nmol/L) group while the decreased levels of T-GSH and NP-SH and activities of CAT and SOD found increased by NG treatments in dose dependent manner. The decreased values of nucleic acids and total protein in AA group were also significantly (P < 0.01) increased in all three NG supplemented groups respectively. NG pretreatment inhibited the TNF-α levels (123.76 ± 3.76 pg/mg, 122.62 ± 3.41 pg/mg and 121.51 ± 2.61 pg/mg vs 134.24 ± 4.78 pg/mg, P < 0.05) compared to AA group, respectively. Interleukins, IL-1β and IL-6 levels were also decreased in NG50 + AA (314.37 ± 16.31 pg/mg and 292.58 ± 23.68 pg/mg, P < 0.05) and NG100 + AA (416.72 ± 49.62 pg/mg and 407.96 ± 43.87 pg/mg, P < 0.05) when compared to AA (352.46 ± 8.58 pg/mg and 638.58 ± 115.98 pg/mg) group. Similar decrease (P < 0.05) was seen in PGE2 and NO values when compared to AA group. The group pretreated with MES, as a reference drug, showed significant (P < 0.01) protection against the changes induced in colon tissue by AA administration respectively. CONCLUSION In present study, NG produced antioxidant and anti-inflammatory effects demonstrating protective effect in inflammatory bowel disease.
Environmental Toxicology and Pharmacology | 2013
Abdullah H. Al-Assaf; Ali M. Alqahtani; Ali A. Alshatwi; Naveed Ahmed Syed; Gowhar Shafi; Tarique N. Hasan
Cadmium (Cd) is a major pollutant of environment. It can be fatal to human. In spite of bulk of research and literatures, the mechanism of a fatality against human is still not understood completely. Toxic and carcinogenic effects of Cd in rodents and humans are well known. However, effects of Cd on induction of apoptosis are still elusive. This study indicates immunosuppression and immunotoxicity due to Cd exposure. Present study was undertaken to determine the mechanism of cell death in vitro in human peripheral blood lymphocytes induced by Cd. Our findings suggest the toxicity due to Cd is attributed to programmed cell death-apoptosis. IC₅₀ was calculated at 21.74 μM. A significant increase of expression of the pro-apoptotic genep53, Fas and Caspase-3 in human lymphocytes was found. Cd induced p53-dependent apoptosis through cooperation between Bak upregulation without changing the Bcl-2 and Bax expression. Data of this study compel to speculate that apoptosis may also be attributed to CD95/Fas complex formation, and p53 direct apoptogenic potential at mitochondria. It was confirmed by the increased expression of Caspase-3. Although, this work does not address all the questions regarding the mechanism of Cd induced apoptosis, but these findings establish an important role of p53 and mitochondrial function during apoptosis in human lymphocyte. Moreover, based upon our findings, the role of Fas in Cd induced apoptosis is also undeniable. Hence further investigations are required to understand the different mechanism involved into apoptosis of lymphocytes due to Cd exposure.
Journal of Natural Medicines | 2011
Balakrishnan Aristatile; Khalid S. Al-Numair; Abdullah H. Al-Assaf; Kodukkur Viswanathan Pugalendi
The present study aimed at investigating the effect of carvacrol on hepatic mitochondrial enzyme activities and DNA damage in d-galactosamine (d-GalN)-induced hepatotoxicity in male albino Wistar rats. The activities of hepatic mitochondrial enzymes such as isocitrate dehydrogenase, α-ketoglutarate dehydrogenase, succinate dehydrogenase, malate dehydrogenase, NADPH dehydrogenase and cytochrome c oxidase significantly decreased in d-GalN-hepatotoxic rats, and administration of carvacrol brought these parameters towards normality. In d-GalN-hepatotoxic rats, the hepatic mitochondrial concentration of thiobarbituric acid reactive substances significantly increased, and administration of carvacrol significantly reduced them towards normality. Furthermore, the activities of enzymatic antioxidants such as superoxide dismutase and glutathione peroxidase and the levels of non-enzymatic antioxidants such as vitamin C, vitamin E and reduced glutathione decreased significantly in the liver mitochondria. Administration of carvacrol returned the enzymatic and non-enzymatic antioxidants towards normality. d-GalN-hepatotoxic rats had increased DNA damage, which administration of carvacrol significantly decreased. These results suggest that carvacrol has liver mitochondrial antioxidant properties and possesses a defensive effect against mitochondrial enzymes and DNA damage in d-GalN-induced rats.
Evidence-based Complementary and Alternative Medicine | 2012
Ali A. Alshatwi; Tarique N. Hasan; Gowhar Shafi; Naveed Ahmed Syed; Abdullah H. Al-Assaf; Mohammed S. Alamri; Abdrohman S. Al-Khalifa
With the increased use of plant-based cancer chemotherapy, exploring the antiproliferative effects of phytochemicals for anticancer drug design has gained considerable attention worldwide. This study was undertaken to investigate the effect of walnut green husk extracts on cell proliferation and to determine the possible molecular mechanism of extract-induced cell death by quantifying the expression of Bcl-2, Bax, caspases-3, and Tp53. PC-3 human prostate cancer cells. In this study, we found that green husk extracts suppressed proliferation and induced apoptosis in a dose- and time-dependent manner by modulating expression of apoptosis-related genes. This involved DNA fragmentation (determined by TUNEL assay) and significant changes in levels of mRNA and the expression of corresponding proteins. An increase in expressions of Bax, caspase-3, and tp53 genes and their corresponding proteins was detected using real-time PCR and western blot analysis in PC-3 cells treated with the green husk organic extracts. In contrast, Bcl2 expression was downregulated after exposure to the extracts. Our data suggest the presence of bioactive compound(s) in walnut green husks that are capable of killing prostate carcinoma cells by inducing apoptosis and that the husks are a candidate source of anticancer drugs.
Journal of Biochemical and Molecular Toxicology | 2015
Balakrishnan Aristatile; Khalid S. Al-Numair; Abdullah H. Al-Assaf; Chinnadurai Veeramani; Kodukkur Viswanathan Pugalendi
Exposure to ultraviolet B (UVB; 280‐320 nm) radiation induces the formation of reactive oxygen species (ROS) in the biological system. In this study, we examined the protective effect of carvacrol on UVB‐induced lipid peroxidation and oxidative DNA damage with reference to alterations in cellular an‐tioxidant status in human lymphocytes. A series of in vitro assays (hydroxyl radical, superoxide, nitric oxide, DPPH (2,2‐Diphenyl‐1‐picryl hydrazyl), and ABTS (2,2‐azino‐bis‐3‐ethylbenzothiazoline‐6‐sulfonic acid) radical scavenging assays) demonstrate antioxidant property of carvacrol in our study. UVB exposure significantly increased thiobarbituric acid reactive substances (TBARS), lipid hydroperoxides (LHPs), % tail DNA and tail moment; decreased % cell viability and antioxidant status in UVB‐irradiated lymphocytes. Treatment with carvacrol 30 min prior to UVB‐exposure resulted in a significant decline of TBARS, LHP, % tail DNA, and tail moment and increased % cell viability as carvacrol concentration increased. UVB irradiated lymphocytes with carvacrol alone (at 10 μg/mL) gave no significant change in cell viability, TBARS, LHP, % tail DNA, and tail moment when compared with normal lymphocytes. On the basis of our results, we conclude that carvacrol, a dietary antioxidant, mediates its protective effect through modulation of UVB‐induced ROS.
Asian Pacific Journal of Tropical Medicine | 2013
Balakrishnan Aristatile; Abdullah H. Al-Assaf; Kodukkur Viswanathan Pugalendi
OBJECTIVE To unravel the mechanism of anti-inflammatory activity of carvacrol in D-galactosamine (D-GalN)-induced hepatotoxic rats. METHODS The mRNA and protein expression levels of tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2) and nuclear factor kappa-B (NF-κB) were assayed by semi-quantitative reverse transcriptase polymerase chain reaction (RTPCR) and western blot analysis. RESULTS We found that the mRNA and protein expressions of TNF-α, IL-6, iNOS, COX-2 and NF-κB were significantly up-regulated in D-galactosamine induced hepatotoxic rats and treatment with carvacrol significantly down-regulated the expressions of these genes showing the mechanism behind the anti-inflammatory activity of carvacrol. CONCLUSIONS All above results reveal that the carvacrol well known anti-inflammatory activities in D-galactosamine induced hepatotoxic rats.
Environmental Toxicology and Pharmacology | 2014
Ali A. Alshatwi; Tarique N. Hasan; Ali M. Alqahtani; Naveed Ahmed Syed; Gowhar Shafi; Abdullah H. Al-Assaf; Abdulrahmann S. Al-Khalifa
Catechins (flavan-3-ol) are a type of natural phenol and well-studied antioxidants. Catechin hydrate, also known as taxifolin; is non-mutagenic, low in toxicity compared to other immunomodulator antioxidants. We aimed to determine the potential of catechin hydrate to prevent the cyto-genotoxic effects of cadmium in lymphocytes; demonstrate the immuno-protective activity of catechin hydrate. Our previous study indicated that cadmium is apoptogenic. Lymphocytes were treated with catechin hydrate or cadmium and catechine hydrate combinations (range 0.1-100μM) to determine their effects on cell viability. Lymphocytes treated with 100μM catechin hydrate and 100μM cadmium showed cell viability 70.65±6.92% and 5.69±2.27%, respectively. In our previous study cadmium (10 and 20μM) induced apoptosis in 31.8% and 44.4% of lymphocytes, respectively. However, the percentage of apoptotic cells after treatment with the combination of cadmium and catechin hydrate was not significantly different from that of catechin hydrate (P>0.05). Only 7.3% and 10.5% of the lymphocytes were apoptotic after treatment with 10μM cadmium+10μM catechin hydrate and 20μM cadmium+20μM catechin hydrate, respectively. The anti-geno-cytotoxic and immuno-protective potential of catechin hydrate was also demonstrated by the non-significant expression of apoptosis-related genes after treatment with catechin hydrate.
Asian Pacific Journal of Cancer Prevention | 2014
Mohammed I. Alhazmi; Tarique N. Hasan; Gowhar Shafi; Abdullah H. Al-Assaf; Mohammed A. Alfawaz; Ali A. Alshatwi
BACKGROUND Nigella Sativa (NS) is an herb from the Ranunculaceae family that exhibits numerous medicinal properties and has been used as important constituent of many complementary and alternative medicines (CAMs). The ability of NS to kill cancer cells such as PC3, HeLa and hepatoma cells is well established. However, our understanding of the mode of death caused by NS remains nebulous. The objective of this study was to gain further insight into the mode and mechanism of death caused by NS in breast cancer MCF-7 cells. MATERIALS AND METHODS Human breast cancer cells (MCF-7) were treated with a methanolic extract of NS, and a dose- and time-dependent study was performed. The IC50 was calculated using a Cell Titer Blue® viability assay assay, and evidence for DNA fragmentation was obtained by fluorescence microscopy TUNEL assay. Gene expression was also profiled for a number of apoptosis-related genes (Caspase-3, -8, -9 and p53 genes) through qPCR. RESULTS The IC50 of MCF-7 cells was 62.8 μL/mL. When MCF-7 cells were exposed to 50 μL/mL and 100 μL/mL NS for 24 h, 48 h and 72 h, microscopic examination (TUNEL assay) revealed a dose- and time-dependent increase in apoptosis. Similarly, the expression of the Caspase-3, -8, -9 and p53 genes increased significantly according to the dose and time. CONCLUSIONS NS induced apoptosis in MCF-7 cells through both the p53 and caspase pathways. NS could potentially represent an alternative source of medicine for breast cancer therapy.
Cancer Epidemiology | 2013
Abdulaziz A. Alsaif; Tarique N. Hasan; Gowhar Shafi; Naveed Ahmed Syed; Mohammed A. Alsaif; Abdullah H. Al-Assaf; Ali A. Alshatwi
Chemotherapy has been used widely to treat cancer, both as a systemic therapy and as a local treatment. Unfortunately, many types of cancer are still refractory to chemotherapy. The mechanisms of anticancer drug resistance have been extensively explored but have not been fully characterized. This study analyzed the occurrences of polymorphism (SNP) in the MDR1 gene in breast cancer patients and determined a possible association with chemotherapy. The study group included one hundred breast carcinoma patients who subsequently received chemotherapy (the regimen generally consisted of commonly used drugs such as cyclophosphamide, adriamycin, 5-fluorouracil, docetaxel and their combinations). Blood samples from 100 healthy individuals are used, as controls were also genotyped for the MDR1 gene. This investigation revealed a significant correlation with response to various regimens of chemotherapy showing a low response to therapy with the CT/TT genotype at (exon 12) 1236 codon (p<0.001). These findings demonstrate, for the first time, that the polymorphisms in (exon 12) 1236 codon of the MDR1 gene greatly influence the drug response in patients from the Arab population of Saudi Arabia.