Abdullah S. Alhomida
King Saud University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Abdullah S. Alhomida.
Journal of Neuroinflammation | 2012
Nikhat J. Siddiqi; Mohamed Anwar K Abdelhalim; Afaf El-Ansary; Abdullah S. Alhomida; Wei-Yi Ong
BackgroundGold nanoparticles (AuNPs) are finding increased use in therapeutics and imaging. However, their toxic effects still remain to be elucidated. Therefore this study was undertaken to study the biochemical effects of AuNPs on rat brain and identify potential biomarkers of AuNP toxicity.MethodsMale Wister rats weighing 150–200 g were injected with 20 μg/kg body weight of 20-nm gold nanoparticles for 3 days through the intraperitoneal route. The rats were killed by carbon dioxide asphyxiation 24 h after the last dose of gold nanoparticle injection. The parameters studied included lipid peroxidation, glutathione peroxidase, 8- hydroxydeoxyguanosine, caspase-3, heat shock protein70, serotonin, dopamine, gamma amino-butyric acid and interferon-γ.ResultsIn this study AuNPs caused generation of oxidative stress and a decrease of antioxidant enzyme, viz., glutathione peroxidase activity in rat brain. This was accompanied by an increase in 8-hydroxydeoxyguanosine, caspase-3 and heat shock protein70, which might lead to DNA damage and cell death. Gold nanoparticles also caused a significant decrease in the levels of neurotransmitters like dopamine and serotonin, indicating a possible change in the behavior of the treated animals. There was a significant increase in the cerebral levels of IFN-γ in treated animals.ConclusionThis study concludes that AuNPs cause generation of oxidative stress and an impairment of the antioxidant enzyme glutathione peroxidase in rat brain. AuNPs also cause generation of 8-hydroxydeoxyguanosine (8OHdG), caspase-3 and heat shock protein70 (Hsp70), and IFN-γ, which may lead to inflammation and DNA damage/cell death.
Biochemical Pharmacology | 2000
Mohammad A. Kamal; Abdullah S. Alhomida; Abdulaziz A. Al-Jafari
Characterization of the kinetic parameters of tolserine, a novel acetylcholinesterase (AChE) inhibitor of potential in the therapy of Alzheimers disease, to inhibit purified human erythrocyte AChE was undertaken for the first time. An IC(50) value was estimated by three methods. Its mean value was found to be 8.13 nM, whereas the IC(100) was observed to be 25.5 nM as calculated by single graphical method. The Michaelis-Menten constant (K(m)) for the hydrolysis of the substrate acetylthiocholine iodide was found to be 0.08 mM. Dixon as well as Lineweaver-Burk plots and their secondary replots indicated that the nature of the inhibition was of the partial non-competitive type. The value of K(i) was estimated as 4.69 nM by the primary and secondary replots of the Dixon as well as secondary replots of the Lineweaver-Burk plot. Four new kinetic constants were also investigated by polynomial regression analysis of the relationship between the apparent K(i) (K(Iapp)) and substrate concentration, which may open new avenues for the kinetic study of the inhibition of several enzymes by a wide variety of inhibitors in vitro. Tolserine proved to be a highly potent inhibitor of human AChE compared to its structural analogues physostigmine and phenserine.
International Journal of Molecular Sciences | 2013
Mohammad Shamsul Ola; Mohd Imtiaz Nawaz; Haseeb A. Khan; Abdullah S. Alhomida
Diabetic retinopathy is widely considered to be a neurovascular disease. This is in contrast to its previous identity as solely a vascular disease. Early in the disease progression of diabetes, the major cells in the neuronal component of the retina consist of retinal ganglion cells and glial cells, both of which have been found to be compromised. A number of retinal function tests also indicated a functional deficit in diabetic retina, which further supports dysfunction of neuronal cells. As an endocrinological disorder, diabetes alters metabolism both systemically and locally in several body organs, including the retina. A growing body of evidences indicates increased levels of excitotoxic metabolites, including glutamate, branched chain amino acids and homocysteine in cases of diabetic retinopathy. Also present, early in the disease, are decreased levels of folic acid and vitamin-B12, which are potential metabolites capable of damaging neurons. These altered levels of metabolites are found to activate several metabolic pathways, leading to increases in oxidative stress and decreases in the level of neurotrophic factors. As a consequence, they may damage retinal neurons in diabetic patients. In this review, we have discussed those potential excitotoxic metabolites and their implications in neuronal damage. Possible therapeutic targets to protect neurons are also discussed. However, further research is needed to understand the exact molecular mechanism of neurodegeneration so that effective neuroprotection strategies can be developed. By protecting retinal neurons early in diabetic retinopathy cases, damage of retinal vessels can be protected, thereby helping to ameliorate the progression of diabetic retinopathy, a leading cause of blindness worldwide.
Comparative Biochemistry and Physiology B | 1995
Abdullah S. Alhomida; Ali S. Duhaiman; Abdulaziz A. Al-Jafari; M.A. Junaid
The total, free and acyl carnitine levels were measured in plasma and tissues of the Arabian camel (Camelus dromedarius). Significant variation in carnitine concentrations were observed in plasma and tissues of the camel when compared with other animal species. A higher proportion of acyl carnitine was found in plasma and skeletal muscle of the camel than other animal species. Among the camel tissues, skeletal muscle possessed the highest amount of carnitine while the lowest amount was found in kidney. The higher carnitine content and a higher proportion of acyl carnitine in plasma and tissues of the Arabian camel suggest an adaptive mechanism that could be common to desert animal species.
Biomolecules & Therapeutics | 2012
Kazuhiro Tanaka; Akhlaq A. Farooqui; Nikhat J. Siddiqi; Abdullah S. Alhomida; Wei-Yi Ong
Docosahexaenoic acid (DHA) is the major polyunsaturated fatty acid (PUFA) in the brain and a structural component of neuronal membranes. Changes in DHA content of neuronal membranes lead to functional changes in the activity of receptors and other proteins which might be associated with synaptic function. Accumulating evidence suggests the beneficial effects of dietary DHA supplementation on neurotransmission. This article reviews the beneficial effects of DHA on the brain; uptake, incorporation and release of DHA at synapses, effects of DHA on synapses, effects of DHA on neurotransmitters, DHA metabolites, and changes in DHA with age. Further studies to better understand the metabolome of DHA could result in more effective use of this molecule for treatment of neurodegenerative or neuropsychiatric diseases.
Toxicology | 2000
Abdullah S. Alhomida; Ali A. Al-Rajhi; Mohammad A. Kamal; Abdulaziz A. Al-Jafari
For the first time, kinetic parameters of the effect of tacrine, an anti-cholinesterase inhibitor of therapeutic potential in Alzheimers disease has been studied on human retinal acetyl-cholinesterase (AChE). Tacrine inhibited the AChE activity in a concentration dependent manner, the IC(50) being about 45 nM. The Michaelis-Menten constant (K(m)) for the hydrolysis of acetylthiocholine iodide was found to be 0.120 mM and this value was increased by 4-52.8% in the presence of tacrine. V(max) was observed to be 2.23 micromol/h per mg protein for the control system, while it was decreased by 14.73-56.25% in the tacrine treated systems. Dixon as well as Lineweaver-Burk plots and their secondary replots indicated that the nature of the inhibition was of the mixed type, i. e. a combination of competitive and noncompetitive inhibition. The values of K(i) and K(I) were estimated to be as 37.76 and 64.36 nM, respectively.
Cell Biochemistry and Function | 2000
N. J Siddiqi; Abdulaziz A. Al-Jafari; Abdullah S. Alhomida
This study was conducted to determine the concentration of total, free, peptide‐bound, protein‐bound, soluble and insoluble collagen hydroxyproline (Hyp) in tissues from the Arabian camel (Camelus dromedarius). Results indicated that there were significant differences in the concentration of total, free, peptide‐bound, protein‐bound, soluble and insoluble collagen Hyp in various tissues (P < 0·01). Camel kidney showed a significantly high concentration of total, free, peptide‐bound and protein‐bound Hyp and collagen content as compared to other tissues examined (P < 0·01). Kidney also showed a significantly high concentration of soluble collagen Hyp as compared to other tissues examined (P < 0·01). However, the concentration of insoluble collagen Hyp was significantly high in liver when compared to other tissues (P < 0·01). These variations may result from differences in the collagen structure and/or composition in this species. Copyright
BioMed Research International | 2013
Haseeb A. Khan; Mohamed Anwar K Abdelhalim; Abdullah S. Alhomida; Mohammed S. Al-Ayed
The data on the biocompatibility of naked gold nanoparticles (GNPs) are scarce, and their interpretation is controversial. We studied the acute (1 day) and subchronic (5 days) effects of GNPs (10 and 50 nm diameter) on expression of interleukin-1 beta (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-α) in the liver and kidneys of rats. In the liver, the GNPs of both sizes (10 and 50 nm) significantly increased the cytokines gene expression on day 1 which was subsided on day 5; the GNPs of 50 nm size produced more severe inflammatory response as compared to smaller sized GNPs. In the kidney, the GNPs did not produce any significant change in the expression of IL-1β. Although the gene expression of IL-6 and TNF-α was not affected by GNPs of 10 nm size, 50 nm GNPs significantly increased the expression of IL-6 and TNF-α in the kidneys of rats on day 1 after treatment which returned to normalcy on day 5. These findings indicate the possible immunocompatibility of medium sized GNPs as they caused only a transient acute phase increase in proinflammatory cytokines expression followed by their normalcy during the repeated exposure.
Current Neuropharmacology | 2014
Mohammad Shamsul Ola; Abdullah S. Alhomida
Diabetic retinopathy (DR) is one of the major complications of diabetes causing vision loss and blindness worldwide. DR is widely recognized as a neurodegenerative disease as evidenced from early changes at cellular and molecular levels in the neuronal component of the diabetic retina, which is further supported by various retinal functional tests indicating functional deficits in the retina soon after diabetes progression. Diabetes alters the level of a number of neurodegenerative metabolites, which increases influx through several metabolic pathways which in turn induce an increase in oxidative stress and a decrease in neurotrophic factors, thereby damage retinal neurons. Loss of neurons may implicate in vascular pathology, a clinical signs of DR observed at later stages of the disease. Here, we discuss diabetes-induced potential metabolites known to be detrimental to neuronal damage and their mechanism of action. In addition, we highlight important neurotrophic factors, whose level have been found to be dysregulated in diabetic retina and may damage neurons. Furthermore, we discuss potential drugs and strategies based on targeting diabetes-induced metabolites, metabolic pathways, oxidative stress, and neurotrophins to protect retinal neurons, which may ameliorate vision loss and vascular damage in DR.
Toxicological Sciences | 2009
Haseeb A. Khan; Abdullah S. Alhomida; Ibrahim A. Arif
This investigation was aimed to study the effects of individual and concomitant exposures of the two nitrile compounds, the industrially important acrylonitrile (ACN; 5, 15, 45 mg/kg/day) and the positive control iminodipropionitrile (IDPN; 100 mg/kg/day) in rats. The six treatment groups were 1 (control), 2 (ACN 5), 3 (ACN 15), 4 (ACN 45), 5 (IDPN), and 6 (IDPN + ACN 15). Both the drugs were started on the same day and continued for 9 days (IDPN was given daily 30 min before ACN but stopped a day earlier). The animals were daily observed for neurobehavioral abnormalities including dyskinetic head movements, circling, tail hanging, air righting reflex, and contact inhibition of righting reflex. There was no dyskinetic behavioral abnormality in the animals treated with any of the three doses of ACN whereas all the rats in IDPN alone treated group developed clear symptoms of excitation, circling, and chorea syndrome (ECC syndrome) on day 9. Concomitant treatment of rats with ACN significantly attenuated the severity of IDPN-induced behavioral deficits. Administration of ACN significantly depleted glutathione (GSH) in striatum, hippocampus and cerebral cortex; IDPN significantly reduced the GSH only in striatum. The anterior striatum showed intense tyrosine hydroxylase (TH) expression in IDPN alone treated rat as compared to control and ACN alone treated rat. Cotreatment with ACN reduced the intensity of TH immunostaining in IDPN-treated rats. Administration of IDPN alone caused massive loss of vestibular sensory hair cells in the crista ampullaris whereas the sensory epithelium appeared intact in ACN alone treated groups. The animals receiving the combination of ACN and IDPN showed comparatively less degeneration of sensory hair cells than IDPN alone group. These findings suggest that ACN and IDPN produce different behavioral effects that are exerted through entirely different mechanisms; the nervous and vestibular systems appear to be the major target sites of these toxins, respectively.