Abe D. Falcone
Purdue University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Abe D. Falcone.
The Astrophysical Journal | 2005
M. Błazejowski; G. Blaylock; I. H. Bond; S. M. Bradbury; J. H. Buckley; D. A. Carter-Lewis; O. Celik; P. Cogan; W. Cui; M. K. Daniel; C. Duke; Abe D. Falcone; D. J. Fegan; S. J. Fegan; J. P. Finley; L. Fortson; S. Gammell; K. Gibbs; G. G. Gillanders; J. Grube; K. Gutierrez; J. Hall; D. Hanna; J. Holder; D. Horan; B. Humensky; G. E. Kenny; M. Kertzman; D. Kieda; J. Kildea
We report results from an intensive multiwavelength monitoring campaign on the TeV blazar Mrk 421 over the period of 2003-2004. The source was observed simultaneously at TeV energies with the Whipple 10 m telescope and at X-ray energies with the Rossi X-Ray Timing Explorer (RXTE) during each clear night within the Whipple observing windows. Supporting observations were also frequently carried out at optical and radio wavelengths to provide simultaneous or contemporaneous coverages. The large amount of simultaneous data has allowed us to examine the variability of Mrk 421 in detail, including cross-band correlation and broadband spectral variability, over a wide range of flux. The variabilities are generally correlated between the X-ray and gamma-ray bands, although the correlation appears to be fairly loose. The light curves show the presence of flares with varying amplitudes on a wide range of timescales at both X-ray and TeV energies. Of particular interest is the presence of TeV flares that have no coincident counterparts at longer wavelengths, because the phenomenon seems difficult to understand in the context of the proposed emission models for TeV blazars. We have also found that the TeV flux reached its peak days before the X-ray flux did during a giant flare (or outburst) in 2004 (with the peak flux reaching ~135 mcrab in X-rays, as seen by the RXTE ASM, and ~3 crab in gamma rays). Such a difference in the development of the flare presents a further challenge to both the leptonic and hadronic emission models. Mrk 421 varied much less at optical and radio wavelengths. Surprisingly, the normalized variability amplitude in the optical seems to be comparable to that in the radio, perhaps suggesting the presence of different populations of emitting electrons in the jet. The spectral energy distribution of Mrk 421 is seen to vary with flux, with the two characteristic peaks moving toward higher energies at higher fluxes. We have failed to fit the measured spectral energy distributions (SEDs) with a one-zone synchrotron self-Compton model; introducing additional zones greatly improves the fits. We have derived constraints on the physical properties of the X-ray/gamma-ray flaring regions from the observed variability (and SED) of the source. The implications of the results are discussed.
The Astrophysical Journal | 2010
Svetlana G. Jorstad; Alan P. Marscher; Valeri M. Larionov; I. Agudo; Paul S. Smith; M. A. Gurwell; A. Lähteenmäki; M. Tornikoski; A. Markowitz; Arkadi A. Arkharov; D. Blinov; Ritaban Chatterjee; Francesca D. D'Arcangelo; Abe D. Falcone; José L. Gómez; V. A. Hagen-Thorn; Brendan Jordan; G. N. Kimeridze; T. S. Konstantinova; E. N. Kopatskaya; Omar M. Kurtanidze; Elena G. Larionova; L. V. Larionova; I. M. McHardy; Daria A. Melnichuk; Mar Roca-Sogorb; Gary D. Schmidt; Brian A. Skiff; Brian Taylor; Clemens Thum
We analyze the behavior of the parsec-scale jet of the quasar 3C 454.3 during pronounced flaring in 2005-2008. Three major disturbances propagated down the jet along different trajectories with Lorentz factors Γ > 10. The disturbances show a clear connection with millimeter-wave outbursts, in 2005 May/June, 2007 July, and 2007 December. High-amplitude optical events in the R-band light curve precede peaks of the millimeter-wave outbursts by 15-50 days. Each optical outburst is accompanied by an increase in X-ray activity. We associate the optical outbursts with propagation of the superluminal knots and derive the location of sites of energy dissipation in the form of radiation. The most prominent and long lasting of these, in 2005 May, occurred closer to the black hole, while the outbursts with a shorter duration in 2005 autumn and in 2007 might be connected with the passage of a disturbance through the millimeter-wave core of the jet. The optical outbursts, which coincide with the passage of superluminal radio knots through the core, are accompanied by systematic rotation of the position angle of optical linear polarization. Such rotation appears to be a common feature during the early stages of flares in blazars. We find correlations between optical variations and those at X-ray and γ-ray energies. We conclude that the emergence of a superluminal knot from the core yields a series of optical and high-energy outbursts, and that the millimeter-wave core lies at the end of the jets acceleration and collimation zone. We infer that the X-ray emission is produced via inverse Compton scattering by relativistic electrons of photons both from within the jet (synchrotron self-Compton) and external to the jet (external Compton, or EC); which one dominates depends on the physical parameters of the jet. A broken power-law model of the γ-ray spectrum reflects a steepening of the synchrotron emission spectrum from near-IR to soft UV wavelengths. We propose that the γ-ray emission is dominated by the EC mechanism, with the sheath of the jet supplying seed photons for γ-ray events that occur near the millimeter-wave core.
The Astrophysical Journal | 2006
P. Rebillot; H. M. Badran; G. Blaylock; S. M. Bradbury; J. H. Buckley; D. A. Carter-Lewis; O. Celik; Y. C. Chow; P. Cogan; W. Cui; M. Daniel; C. Duke; Abe D. Falcone; S. J. Fegan; J. P. Finley; L. Fortson; G. H. Gillanders; J. Grube; K. Gutierrez; G. Gyuk; D. Hanna; J. Holder; D. Horan; S. B. Hughes; G. E. Kenny; M. Kertzman; D. Kieda; J. Kildea; K. Kosack; H. Krawczynski
We report on a multiwavelength campaign on the TeV γ-ray blazar Mrk 421 performed during 2002 December and 2003 January. These target of opportunity observations were initiated by the detection of X-ray and TeV γ-ray flares with the All Sky Monitor (ASM) on board the Rossi X-Ray Timing Explorer (RXTE) and the 10 m Whipple γ-ray telescope. The campaign included observational coverage in the radio (University of Michigan Radio Astronomy Observatory), optical (Boltwood, La Palma KVA 0.6 m; WIYN 0.9 m), X-ray (RXTE pointed telescopes), and TeV γ-ray (Whipple and HEGRA) bands. At TeV energies, the observations revealed several flares at intermediate flux levels, peaking between 1 and 1.5 times the flux from the Crab Nebula. While the time-averaged spectrum can be fitted with a single power law of photon index Γ = 2.8 from dNγ/dE ∝ E-Γ, we find some evidence for spectral variability. Confirming earlier results, the campaign reveals a rather loose correlation between the X-ray and TeV γ-ray fluxes. In one case, a very strong X-ray flare is not accompanied by a comparable TeV γ-ray flare. Although the source flux was variable in the optical and radio bands, the sparse sampling of the optical and radio light curves does not allow us to study the correlation properties in detail. We present a simple analysis of the data with a synchrotron self-Compton model, emphasizing that models with very high Doppler factors and low magnetic fields can describe the data.
The Astrophysical Journal | 2004
D. Horan; H. M. Badran; I. H. Bond; P. J. Boyle; S. M. Bradbury; J. H. Buckley; D. A. Carter-Lewis; M. Catanese; O. Celik; W. Cui; M. Daniel; M. D’Vali; I. de la Calle Perez; C. Duke; Abe D. Falcone; D. J. Fegan; S. J. Fegan; J. P. Finley; L. Fortson; J. A. Gaidos; S. Gammell; K. Gibbs; G. H. Gillanders; J. Grube; J. Hall; T. A. Hall; D. Hanna; A. M. Hillas; J. Holder; A. Jarvis
We present results from observations of 29 BL Lacertae objects, taken with the Whipple Observatory 10 m gamma-ray telescope between 1995 and 2000. The observed objects are mostly at low redshift (z < 0:2), but observations of objects of up to z ¼ 0:444 are also reported. Five of the objects are EGRET sources and two are unconfirmed TeV sources. Three of the confirmed sources of extragalactic TeV gamma rays were originally observed as part of this survey and have been reported elsewhere. No significant excesses are detected from any of the other objects observed, on timescales of days, months, or years. We report 99.9% confidence level flux upper limits for the objects for each observing season. The flux upper limits are typically 20% of the Crab flux, although for some sources, limits as sensitive as 6% of the Crab flux were derived. The results are consistent with the synchrotron self-Compton model predictions considered in this work. Subject headings: BL Lacertae objects: general — galaxies: jets — gamma rays: observations
The Astrophysical Journal | 2002
D. Petry; I. H. Bond; S. M. Bradbury; J. H. Buckley; D. A. Carter-Lewis; Wei Cui; C. Duke; I. de la Calle Perez; Abe D. Falcone; D. J. Fegan; S. J. Fegan; J. P. Finley; J. A. Gaidos; K. Gibbs; S. Gammell; J. Hall; T. A. Hall; A. M. Hillas; J. Holder; D. Horan; M. Jordan; M. Kertzman; D. Kieda; J. Kildea; J. Knapp; K. Kosack; F. Krennrich; S. LeBohec; P. Moriarty; D. Müller
The BL Lac object H1426+428 was recently detected as a high-energy γ-ray source by the VERITAS collaboration (Horan et al.). We have reanalyzed the 2001 portion of the data used in the detection in order to examine the spectrum of H1426+428 above 250 GeV. We find that the time-averaged spectrum agrees with a power law of the shape The statistical evidence from our data for emission above 2.5 TeV is 2.6 σ. At the 95% confidence level, the integral flux of H1426+428 above 2.5 TeV is larger than 3% of the corresponding flux from the Crab Nebula. The spectrum is consistent with the (noncontemporaneous) measurement by Aharonian et al. both in shape and in normalization. Below 800 GeV, the data clearly favor a spectrum steeper than that of any other TeV blazar observed so far, indicating a difference in the processes involved either at the source or in the intervening space.
The Astrophysical Journal | 2003
R. Atkins; W. Benbow; D. Berley; Min Chen; D. G. Coyne; B. L. Dingus; D. E. Dorfan; R. W. Ellsworth; D. Evans; Abe D. Falcone; Lazar Fleysher; R. Fleysher; Galen R. Gisler; M. M. Gonzalez; J. A. Goodman; C. M. Hoffman; S. Hugenberger; L. A. Kelley; Spencer R. Klein; I. Leonor; J. McCullough; J. E. McEnery; R. S. Miller; Allen Mincer; M. F. Morales; P. Nemethy; J. Ryan; F. W. Samuelson; B. C. Shen; A. Shoup
Evidence of TeV emission from GRB 970417a has been previously reported using data from the Milagrito detector. Constraints on the TeV fluence and the energy spectrum are now derived using additional data from a scaler system that recorded the rate of signals from the Milagrito photomultipliers. This analysis shows that if emission from GRB 970417a has been observed, it must contain photons with energies above 650 GeV. Some consequences of this observation are discussed.Evidence of TeV emission from GRB970417a has been previously reported using data from the Milagrito detector. Constraints on the TeV fluence and the energy spectrum are now derived using additional data from a scaler system that recorded the rate of signals from the Milagrito photomultipliers. This analysis shows that if emission from GRB970417a has been observed, it must contain photons with energies above 650 GeV. Some consequences of this observation are discussed.
The Astrophysical Journal | 2004
Abe D. Falcone; I. H. Bond; P. J. Boyle; S. M. Bradbury; J. H. Buckley; D. A. Carter-Lewis; O. Celik; W. Cui; M. Daniel; M. D’Vali; I. de la Calle Perez; C. Duke; D. J. Fegan; S. J. Fegan; J. P. Finley; L. Fortson; J. A. Gaidos; S. Gammell; K. Gibbs; G. H. Gillanders; J. Grube; J. Hall; T. A. Hall; D. Hanna; A. M. Hillas; J. Holder; D. Horan; A. Jarvis; G. E. Kenny; M. Kertzman
Blazars have traditionally been separated into two broad categories based on their optical emission characteristics. Blazars with faint or no emission lines are referred to as BL Lacertae objects (BL Lacs), and blazars with prominent, broad emission lines are commonly referred to as flat-spectrum radio quasars (FSRQs). The spectral energy distribution of FSRQs has generally been thought of as being more akin to the low-peaked BL Lacs, which exhibit a peak in the infrared region of the spectrum, as opposed to high-peaked BL Lacs (HBLs), which exhibit a peak in UV/X-ray region of the spectrum. All blazars that are currently confirmed as sources of TeV emission fall into the HBL category. Recent surveys have found several FSRQs that exhibit spectral properties, particularly the synchrotron peak frequency, similar to HBLs. These objects are potential sources of TeV emission according to several models of blazar jet emission and the evolution of blazars. Measurements of TeV flux or flux upper limits could impact existing theories explaining the links between different blazar types and could have a significant impact on our understanding of the nature of objects that are capable of TeV emission. In particular, the presence (or absence) of TeV emission from FSRQs could confirm (or cast doubt on) recent evolutionary models that expect intermediate objects in a transitional state between FSRQ and BL Lac. The Whipple 10 m imaging air Cerenkov gamma-ray telescope is well suited for TeV gamma-ray observations. Using the Whipple telescope, we have taken data on a small selection of nearby (z < 0.1 in most cases) high-peaked FSRQs. Although one of the objects, B2 0321+33, showed marginal evidence of flaring, no significant emission was detected. The implications of this paucity of emission and the derived upper limits are discussed.
The Astrophysical Journal | 2003
I. de la Calle Perez; I. H. Bond; Patrick J. Boyle; S. M. Bradbury; J. H. Buckley; D. A. Carter-Lewis; O. Celik; Wei Cui; C. Dowdall; C. Duke; Abe D. Falcone; D. J. Fegan; S. J. Fegan; J. P. Finley; L. Fortson; J. A. Gaidos; K. G. Gibbs; S. Gammell; J. Hall; T. A. Hall; A. M. Hillas; J. Holder; D. Horan; M. Jordan; M. Kertzman; D. Kieda; J. Kildea; J. Knapp; K. Kosack; H. Krawczynski
Our understanding of blazars has been greatly increased in recent years by extensive multiwavelength observations, particularly in the radio, X-ray, and gamma-ray regions. Over the past decade the Whipple 10 m telescope has contributed to this with the detection of five BL Lacertae objects at very high gamma-ray energies. The combination of multiwavelength data has shown that blazars follow a well-defined sequence in terms of their broadband spectral properties. Together with providing constraints on emission models, this information has yielded a means by which potential sources of TeV emission may be identified and predictions made as to their possible gamma-ray flux. We have used the Whipple telescope to search for TeV gamma-ray emission from eight objects selected from a list of such candidates. No evidence has been found for very high energy emission from the objects in our sample, and upper limits have been derived for the mean gamma-ray flux above 390 GeV. These flux upper limits are compared with the model predictions, and the implications of our results for future observations are discussed.
The Astrophysical Journal | 2005
S. J. Fegan; H. M. Badran; I. H. Bond; P. J. Boyle; S. M. Bradbury; J. H. Buckley; D. A. Carter-Lewis; M. Catanese; O. Celik; W. Cui; M. Daniel; M. D’Vali; I. de la Calle Perez; C. Duke; Abe D. Falcone; D. J. Fegan; J. P. Finley; L. Fortson; J. A. Gaidos; S. Gammell; K. Gibbs; G. H. Gillanders; J. Grube; J. Hall; T. A. Hall; D. Hanna; A. M. Hillas; J. Holder; D. Horan; A. Jarvis
The Whipple Observatory 10 m ?-ray telescope has been used to survey the error boxes of EGRET unidentified sources in an attempt to find counterparts at energies of 350 GeV and above. Twenty-one unidentified sources detected by EGRET (more than 10% of the total number) have been included in this survey. In no case is a statistically significant signal found in the EGRET error box, which implies that, at least for this sample, the ?-ray spectra of these sources steepen between 100 MeV and 350 GeV. For each EGRET source location, we list candidate associations and derive upper limits on the integral ?-ray flux above 350 GeV.
The Astrophysical Journal | 2004
Abe D. Falcone; W. Cui; J. P. Finley
Between 7 March 2002 and 15 June 2002, intensive X-ray observations were carried out on the extreme BL Lac object H1426+428 with instruments on board the Rossi X-ray Timing Explorer (RXTE). These instruments provide measurements of H1426+428 in the crucial energy range that characterizes the first peak of its spectral energy distribution. This peak, which is almost certainly due to synchrotron emission, has previously been inferred to be in excess of 100 keV. By taking frequent observations over a four-month campaign, which included