Abel Castorena
National Autonomous University of Mexico
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Abel Castorena.
Advances in Geometry | 2017
Abel Castorena; Alberto López Martín; Montserrat Teixidor i Bigas
Abstract For a projective nonsingular curve of genus g, the Brill–Noether locus Wdr(C)
Results in Mathematics | 2005
Abel Castorena
W^r_d(C)
Journal of Pure and Applied Algebra | 2017
Abel Castorena; Alberto López Martín; Montserrat Teixidor i Bigas
parametrizes line bundles of degree d over C with at least r + 1 (linearly independent) sections. When the curve is generic and the Brill–Noether number ρ(g, r, d) equals 1, one can then talk of the Brill–Noether curve. We introduce combinatorial methods that, with help from the theory of limit linear series, allow us to find invariants of Brill–Noether loci. In particular, we explore the first two invariants of the Brill–Noether curve, giving a new way of calculating the genus of this curve and computing its gonality when C has genus 5.
Journal of Pure and Applied Algebra | 2008
Abel Castorena; Montserrat Teixidor i Bigas
In the moduli space of curves of genus g,
Glasgow Mathematical Journal | 2007
Abel Castorena
Collectanea Mathematica | 2017
Abel Castorena; Gian Pietro Pirola
\mathcal{M}_g
Rendiconti Del Circolo Matematico Di Palermo | 2010
Abel Castorena
Rendiconti Del Circolo Matematico Di Palermo | 2015
Abel Castorena; Graciela Reyes-Ahumada
, let % MathType!MTEF!2!1!+-% feaaeaart1ev0aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXanrfitLxBI9gBaerbd9wDYLwzYbItLDharqqt% ubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq% -Jc9vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0x% fr-xfr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyuam% aaBaaaleaacaaIXaGaaGimaaqabaGccqGH9aqpciGGSbGaaiOBaiaa% ysW7caWGRbWaaSbaaSqaaiaadsfacaaIXaaabeaakiaac+cacaWGRb% WaaSbaaSqaaiaadsfacaaIYaaabeaakiabg2da9iabgkHiTmaabmaa% baGaamyramaaBaaaleaacaWGHbaabeaakiaac+cacaWGsbaacaGLOa% GaayzkaaGaey41aq7aaiWaaeaadaqadaqaaiaadsfadaWgaaWcbaGa% aGOmaaqabaGccqGHsislcaWGubWaaSbaaSqaaiaaigdaaeqaaaGcca% GLOaGaayzkaaGaai4laiaacIcacaWGubWaaSbaaSqaaiaaikdaaeqa% aOGaaGjbVlaadsfadaWgaaWcbaGaamysaaqabaGccaGGPaaacaGL7b% GaayzFaaaaaa!5C4A!
arXiv: Algebraic Geometry | 2018
Abel Castorena; H. Torres-López
{\cal GP}_g
International Journal of Mathematics | 2018
Abel Castorena; H. Torres-López
be the locus of curves that do not satisfy the Gieseker-Petri theorem. In this note we show that % MathType!MTEF!2!1!+-% feaaeaart1ev0aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXanrfitLxBI9gBaerbd9wDYLwzYbItLDharqqt% ubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq% -Jc9vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0x% fr-xfr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyuam% aaBaaaleaacaaIXaGaaGimaaqabaGccqGH9aqpciGGSbGaaiOBaiaa% ysW7caWGRbWaaSbaaSqaaiaadsfacaaIXaaabeaakiaac+cacaWGRb% WaaSbaaSqaaiaadsfacaaIYaaabeaakiabg2da9iabgkHiTmaabmaa% baGaamyramaaBaaaleaacaWGHbaabeaakiaac+cacaWGsbaacaGLOa% GaayzkaaGaey41aq7aaiWaaeaadaqadaqaaiaadsfadaWgaaWcbaGa% aGOmaaqabaGccqGHsislcaWGubWaaSbaaSqaaiaaigdaaeqaaaGcca% GLOaGaayzkaaGaai4laiaacIcacaWGubWaaSbaaSqaaiaaikdaaeqa% aOGaaGjbVlaadsfadaWgaaWcbaGaamysaaqabaGccaGGPaaacaGL7b% GaayzFaaaaaa!5C4A!