Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Abel Santos is active.

Publication


Featured researches published by Abel Santos.


Advanced Materials | 2012

Nanoporous Anodic Alumina Barcodes: Toward Smart Optical Biosensors

Abel Santos; Victor S. Balderrama; María D. Alba; Pilar Formentín; Josep Ferré-Borrull; Josep Pallarès; L.F. Marsal

Toward a smart optical biosensor based on nanoporous anodic alumina (NAA): by modifying the pore geometry in nanoporous anodic alumina we are able to change the effective medium at will and tune the photoluminescence of NAA. The oscillations in the PL spectrum are converted into exclusive barcodes, which are useful for developing optical biomedical sensors in the UV-Visible region.


Expert Opinion on Drug Delivery | 2015

Titania nanotube arrays for local drug delivery: recent advances and perspectives

Dusan Losic; Moom Sinn Aw; Abel Santos; Karan Gulati; Manpreet Bariana

Introduction: Titania nanotube (TNTs) arrays engineered by simple and scalable electrochemical anodization process have been extensively explored as a new nanoengineering approach to address the limitations of systemic drug administration. Due to their outstanding properties and excellent biocompatibility, TNTs arrays have been used to develop new drug-releasing implants (DRI) for emerging therapies based on localized drug delivery (DD). This review highlights the concepts of DRI based on TNTs with a focus on recent progress in their development and future perspectives towards advanced medical therapies. Areas covered: Recent progress in new strategies for controlling drug release from TNTs arrays aimed at designing TNTs-based DRI with optimized performances, including extended drug release and zero-order release kinetics and remotely activated release are described. Furthermore, significant progress in biocompatibility studies on TNTs and their outstanding properties to promote hydroxyapatite and bone cells growths and to differentiate stem cells are highlighted. Examples of ex vivo and in vivo studies of drug-loaded TNTs are shown to confirm the practical and potential applicability of TNTs-based DRI for clinical studies. Finally, selected examples of preliminary clinical applications of TNTs for bone therapy and orthopedic implants, cardiovascular stents, dentistry and cancer therapy are presented. Expert opinion: As current studies have demonstrated, TNTs are a remarkable material that could potentially revolutionize localized DD therapies, especially in areas of orthopedics and localized chemotherapy. However, more extensive ex vivo and in vivo studies should be carried out before TNTs-based DRI could become a feasible technology for real-life clinical applications. This will imply the implementation of different approaches to overcome some technical and commercial challenges.


Analytical Chemistry | 2014

Structural and Optical Nanoengineering of Nanoporous Anodic Alumina Rugate Filters for Real-Time and Label-Free Biosensing Applications

Tushar Kumeria; Mohammad Mahbubur Rahman; Abel Santos; Josep Ferré-Borrull; L.F. Marsal; Dusan Losic

In this study, we report about the structural engineering and optical optimization of nanoporous anodic alumina rugate filters (NAA-RFs) for real-time and label-free biosensing applications. Structurally engineered NAA-RFs are combined with reflection spectroscopy (RfS) in order to develop a biosensing system based on the position shift of the characteristic peak in the reflection spectrum of NAA-RFs (Δλpeak). This system is optimized and assessed by measuring shifts in the characteristic peak position produced by small changes in the effective medium (i.e., refractive index). To this end, NAA-RFs are filled with different solutions of d-glucose, and the Δλpeak is measured in real time by RfS. These results are validated by a theoretical model (i.e., the Looyenga-Landau-Lifshitz model), demonstrating that the control over the nanoporous structure makes it possible to optimize optical signals in RfS for sensing purposes. The linear range of these optical sensors ranges from 0.01 to 1.00 M, with a low detection limit of 0.01 M of d-glucose (i.e., 1.80 ppm), a sensitivity of 4.93 nm M(-1) (i.e., 164 nm per refractive index units), and a linearity of 0.998. This proof-of-concept study demonstrates that the proposed system combining NAA-RFs with RfS has outstanding capabilities to develop ultrasensitive, portable, and cost-competitive optical sensors.


Sensors | 2014

Nanoporous Anodic Alumina Platforms: Engineered Surface Chemistry and Structure for Optical Sensing Applications

Tushar Kumeria; Abel Santos; Dusan Losic

Electrochemical anodization of pure aluminum enables the growth of highly ordered nanoporous anodic alumina (NAA) structures. This has made NAA one of the most popular nanomaterials with applications including molecular separation, catalysis, photonics, optoelectronics, sensing, drug delivery, and template synthesis. Over the past decades, the ability to engineer the structure and surface chemistry of NAA and its optical properties has led to the establishment of distinctive photonic structures that can be explored for developing low-cost, portable, rapid-response and highly sensitive sensing devices in combination with surface plasmon resonance (SPR) and reflective interference spectroscopy (RIfS) techniques. This review article highlights the recent advances on fabrication, surface modification and structural engineering of NAA and its application and performance as a platform for SPR- and RIfS-based sensing and biosensing devices.


Materials | 2014

Nanoporous Anodic Alumina: A Versatile Platform for Optical Biosensors

Abel Santos; Tushar Kumeria; Dusan Losic

Nanoporous anodic alumina (NAA) has become one of the most promising nanomaterials in optical biosensing as a result of its unique physical and chemical properties. Many studies have demonstrated the outstanding capabilities of NAA for developing optical biosensors in combination with different optical techniques. These results reveal that NAA is a promising alternative to other widely explored nanoporous platforms, such as porous silicon. This review is aimed at reporting on the recent advances and current stage of development of NAA-based optical biosensing devices. The different optical detection techniques, principles and concepts are described in detail along with relevant examples of optical biosensing devices using NAA sensing platforms. Furthermore, we summarise the performance of these devices and provide a future perspective on this promising research field.


Journal of Materials Chemistry B | 2014

Drug-releasing implants: current progress, challenges and perspectives

Abel Santos; Moom Sinn Aw; Manpreet Bariana; Tushar Kumeria; Ye Wang; Dusan Losic

The need for more efficient drug delivery strategies to treat resilient diseases and the rise of micro and nanotechnology have led to the development of more sophisticated drug-releasing implants with improved capabilities and performances for localised and controlled therapies. In recent years, implantable drug-releasing systems have emerged as an outstanding alternative to conventional clinical therapies. This new breed of implants has shown promising capabilities to overcome the inherent problems of conventional implants and therapies, making clinical treatments more efficient with minimal side effects. Recent clinical trials have demonstrated that this technology can improve the life of patients and increase their life expectancy. Within this context, this review is aimed at highlighting the different types and concepts of drug-releasing implants incorporating new nanomaterials and nanotechnology-based devices. Furthermore, the principles on which these drug-releasing implants are based as well as their advantages and limitations are discussed in detail. Finally, we provide a future perspective in the development of implantable clinical drug-delivery systems based on micro and nanotechnology.


Analytical Chemistry | 2013

Optically Optimized Photoluminescent and Interferometric Biosensors Based on Nanoporous Anodic Alumina: A Comparison

Abel Santos; Tushar Kumeria; Dusan Losic

Herein, we present a comparative study about the sensing performance of optical biosensors based on photoluminescence spectroscopy (PLS) and reflectometric interference spectroscopy (RIfS) combined with nanoporous anodic alumina (NAA) platforms when detecting different analytes under distinct adsorption conditions. First, NAA platforms are structurally engineered in order for optimizing the optical signals obtained by PLS and RIfS. Then, the most optimal NAA platforms combined with PLS and RIfS are quantitatively compared by detecting two different analytes: d-glucose and l-cysteine under nonspecific and specific adsorption conditions, respectively. The obtained results demonstrate that such parameters as the analyte nature and adsorption conditions play a direct role in the sensing performance of these platforms. However, as this study demonstrates, PLS-NAA platforms are more sensitive than RIfS-NAA ones. The former shows better linearity (i.e., proportional change in the sensing parameter with analyte concentration), higher sensitivity toward analytes (i.e., sharper change in the sensing parameter with analyte concentration), and lower limit of detection (i.e., minimum detectable concentration of analyte).


Colloids and Surfaces B: Biointerfaces | 2015

Advanced biopolymer-coated drug-releasing titania nanotubes (TNTs) implants with simultaneously enhanced osteoblast adhesion and antibacterial properties.

Tushar Kumeria; Htwe Mon; Moom Sinn Aw; Karan Gulati; Abel Santos; Hans J. Griesser; Dusan Losic

Here, we report on the development of advanced biopolymer-coated drug-releasing implants based on titanium (Ti) featuring titania nanotubes (TNTs) on its surface. These TNT arrays were fabricated on the Ti surface by electrochemical anodization, followed by the loading and release of a model antibiotic drug, gentamicin. The osteoblastic adhesion and antibacterial properties of these TNT-Ti samples are significantly improved by loading antibacterial payloads inside the nanotubes and modifying their surface with two biopolymer coatings (PLGA and chitosan). The improved osteoblast adhesion and antibacterial properties of these drug-releasing TNT-Ti samples are confirmed by the adhesion and proliferation studies of osteoblasts and model Gram-positive bacteria (Staphylococcus epidermidis). The adhesion of these cells on TNT-Ti samples is monitored by fluorescence and scanning electron microscopies. Results reveal the ability of these biopolymer-coated drug-releasing TNT-Ti substrates to promote osteoblast adhesion and proliferation, while effectively preventing bacterial colonization by impeding their proliferation and biofilm formation. The proposed approach could overcome inherent problems associated with bacterial infections on Ti-based implants, simultaneously enabling the development of orthopedic implants with enhanced and synergistic antibacterial functionalities and bone cell promotion.


ACS Applied Materials & Interfaces | 2013

Ultrasensitive nanoporous interferometric sensor for label-free detection of gold(III) ions

Tushar Kumeria; Abel Santos; Dusan Losic

In this study, we present an ultrasensitive sensor based on nanoporous anodic alumina (NAA) for detection of gold(III) ions (Au(3+) ions) using reflectometric interference spectroscopy (RIfS). Nanoporous anodic alumina, prepared by two-step electrochemical anodization, was functionalized with 3-mercaptopropyl-tirethoxysilane (MPTES) in order to selectively detect Au(3+) ions. Thus prepared, MPTES-NAA sensors were exposed to different concentrations of Au(3+) ions ranging from 0.1 to 750 μM and the changes in the effective optical thickness (ΔEOT) were monitored in real-time. The linear range of these Au(3+) sensors was from 0.1 to 80 μM, with a lower detection limit of 0.1 μM of Au(3+) ions. Furthermore, the specificity of these MPTES-NAA sensors was validated by sequential exposure to 40 μM solutions of Fe(3+,) Mg(2+), Co(2+), Cu(2+), Ni(2+), Ag(+), and Pb(2+), resulting in negligible changes in EOT as compared to the same concentration of Au(3+) ions. Detection of Au(3+) ions in complex and environmentally and biologically relevant solvents such as tap water and phosphate buffer solution (PBS) was also successfully carried out in order to demonstrate the real-life application of these sensors. Finally, the binding isotherm for Au(3+) ions and thiol (SH) group of MPTES-NAA system was determined by fitting the changes in EOT to Freundlich and Langmuir isotherm models.


ACS Applied Materials & Interfaces | 2012

Photoluminescent Enzymatic Sensor Based on Nanoporous Anodic Alumina

Abel Santos; Gerard Macias; Josep Ferré-Borrull; Josep Pallarès; L.F. Marsal

Herein, we present a smart enzymatic sensor based on nanoporous anodic alumina (NAA) and its photoluminescence (PL) in the UV-visible range. The as-produced structure of NAA is functionalized and activated in order to perform the enzyme immobilization in a controlled manner. The whole process is monitored through the PL spectrum and each stage is characterized by an exclusive barcode, which is associated with the PL oscillations. This characteristic property allows us to calculate the change in the effective optical thickness that takes place after each stage. This makes it possible to accurately detect and quantify the immobilized enzyme within the NAA structure. Finally, the NAA geometry (i.e., the pore length and its diameter) is optimized to improve the enzyme immobilization and its detection inside the pores. This enzymatic sensor can give quick and accurate measurements of enzyme levels, what is crucial in clinical enzymology to prevent and detect diseases at their primary stage.

Collaboration


Dive into the Abel Santos's collaboration.

Top Co-Authors

Avatar

Dusan Losic

University of Adelaide

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

L.F. Marsal

Rovira i Virgili University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Josep Pallarès

Rovira i Virgili University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ye Wang

University of Adelaide

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge