Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Abelmon Gesteira is active.

Publication


Featured researches published by Abelmon Gesteira.


Tree Genetics & Genomes | 2011

Analysis of the NAC transcription factor gene family in citrus reveals a novel member involved in multiple abiotic stress responses

Tahise M. de Oliveira; Luciana C. Cidade; Abelmon Gesteira; Maurício Antônio Coelho Filho; Walter dos Santos Soares Filho; Marcio Gilberto Cardoso Costa

The NAC (NAM, ATAF1, -2, and CUC2) gene family encodes a large family of plant-specific transcription factors that play diverse roles in plant development and stress regulation. In this study, we performed a survey of citrus NAC transcription factors in the HarvEST: Citrus database, in which 45 NAC domain-containing proteins were identified and phylogenetically classified into 13 different subfamilies. The results suggest the existence of a structurally diversified family of NAC transcription factors in citrus, which has not been previously characterized. One of these NAC genes, CsNAC1 was found to be a member of the stress-NAC subfamily, whose homologs from other plant species function in pathways of environmental stress response and tolerance, and was further characterized. The CsNAC1 deduced protein was shown to contain the five N-terminal A through E NAC subdomains, a C-terminal region containing three transcriptional activation motifs, and a predicted NAC nuclear localization signal, consistent with its putative role as a NAC transcription factor. In silico analysis indicated that CsNAC1 was primarily expressed in leaves and shoot meristems, and was involved in general stress responses. Quantitative real-time reverse transcription PCR analysis revealed that CsNAC1 was strongly induced by drought stress in leaves of Citrus reshni and Citrus limonia, and also by salt stress, cold, and ABA in leaves and roots of C. reshni. Collectively, these results suggest that CsNAC1 encodes a novel stress-responsive NAC transcription factor that is potentially useful for engineering tolerance to multiple abiotic stresses in citrus.


Plant Physiology and Biochemistry | 2011

Hydrogen peroxide formation in cacao tissues infected by the hemibiotrophic fungus Moniliophthora perniciosa

Cristianao Villela Dias; Juliano S. Mendes; Anderson Carvalho Dos Santos; Carlos Priminho Pirovani; Abelmon Gesteira; Fabienne Micheli; Karina Peres Gramacho; John Hammerstone; Paulo Mazzafera; Julio Cezar M. Cascardo

In plant-pathogen interaction, the hydrogen peroxide (H₂O₂) may play a dual role: its accumulation inhibits the growth of biotrophic pathogens, while it could help the infection/colonization process of plant by necrotrophic pathogens. One of the possible pathways of H₂O production involves oxalic acid (Oxa) degradation by apoplastic oxalate oxidase. Here, we analyzed the production of H₂O₂, the presence of calcium oxalate (CaOx) crystals and the content of Oxa and ascorbic acid (Asa)--the main precursor of Oxa in plants--in susceptible and resistant cacao (Theobroma cacao L.) infected by the hemibiotrophic fungus Moniliophthora perniciosa. We also quantified the transcript level of ascorbate peroxidase (Apx), germin-like oxalate oxidase (Glp) and dehydroascorbate reductase (Dhar) by RT-qPCR. We report that the CaOx crystal amount and the H₂O₂ levels in the two varieties present distinct temporal and genotype-dependent patterns. Susceptible variety accumulated more CaOx crystals than the resistant one, and the dissolution of these crystals occurred in the early infection steps and in the final stage of the disease in the resistant and the susceptible variety, respectively. High expression of the Glp and accumulation of Oxa were observed in the resistant variety. The content of Asa increased in the inoculated susceptible variety, but remained constant in the resistant one. The susceptible variety presented reduced Dhar expression. The role of H₂O₂ and its formation from Oxa via Apx and Glp in resistant and susceptible variety infected by M. perniciosa were discussed.


Molecular Plant-microbe Interactions | 2009

High-Affinity Copper Transport and Snq2 Export Permease of Saccharomyces cerevisiae Modulate Cytotoxicity of PR-10 from Theobroma cacao

Cristina Pungartnik; Aline Clara Da Silva; S.A. Melo; Karina Peres Gramacho; Julio Cezar M. Cascardo; Martin Brendel; Fabienne Micheli; Abelmon Gesteira

A pathogenesis-related (PR) protein from Theobroma cacao (TcPR-10) was identified from a cacao-Moniliophthora perniciosa interaction cDNA library. Nucleotide and amino acid sequences showed homology with other PR-10 proteins having P loop motif and Betv1 domain. Recombinant TcPR-10 showed in vitro and in vivo ribonuclease activity, and antifungal activity against the basidiomycete cacao pathogen M. perniciosa and the yeast Saccharomyces cerevisiae. Fluorescein isothiocyanate-labeled TcPR-10 was internalized by M. perniciosa hyphae and S. cerevisiae cells and inhibited growth of both fungi. Energy and temperature-dependent internalization of the TcPR-10 suggested an active importation into the fungal cells. Chronical exposure to TcPR-10 of 29 yeast mutants with single gene defects in DNA repair, general membrane transport, metal transport, and antioxidant defenses was tested. Two yeast mutants were hyperresistant compared with their respective isogenic wild type: ctr3Delta mutant, lacking the high-affinity plasma membrane copper transporter and mac1Delta, the copper-sensing transcription factor involved in regulation of high-affinity copper transport. Acute exposure of exponentially growing yeast cells revealed that TcPR-10 resistance is also enhanced in the Snq2 export permease-lacking mutant which has reduced intracellular presence of TcPR-10.


Genomics insights | 2010

ESTs from Seeds to Assist the Selective Breeding of Jatropha curcas L. for Oil and Active Compounds.

Kleber Alves Gomes; Tiago C. Almeida; Abelmon Gesteira; Ivon Pinheiro Lôbo; Ana Carolina Ramos Guimarães; Antonio Miranda; Marie-Anne Van Sluys; Rosenira Serpa da Cruz; Julio Cezar M. Cascardo; Nicolas Carels

We report here on the characterization of a cDNA library from seeds of Jatropha curcas L. at three stages of fruit maturation before yellowing. We sequenced a total of 2200 clones and obtained a set of 931 non-redundant sequences (unigenes) after trimming and quality control, ie, 140 contigs and 791 singlets with PHRED quality ≥10. We found low levels of sequence redundancy and extensive metabolic coverage by homology comparison to GO. After comparison of 5841 non-redundant ESTs from a total of 13193 reads from GenBank with KEGG, we identified tags with nucleotide variations among J. curcas accessions for genes of fatty acid, terpene, alkaloid, quinone and hormone pathways of biosynthesis. More specifically, the expression level of four genes (palmitoyl-acyl carrier protein thioesterase, 3-ketoacyl-CoA thiolase B, lysophosphatidic acid acyltransferase and geranyl pyrophosphate synthase) measured by real-time PCR proved to be significantly different between leaves and fruits. Since the nucleotide polymorphism of these tags is associated to higher level of gene expression in fruits compared to leaves, we propose this approach to speed up the search for quantitative traits in selective breeding of J. curcas. We also discuss its potential utility for the selective breeding of economically important traits in J. curcas.


Molecular Biology Reports | 2011

Unraveling new genes associated with seed development and metabolism in Bixa orellana L. by expressed sequence tag (EST) analysis

Virgínia Lúcia Fontes Soares; Simone M. Rodrigues; Tahise M. de Oliveira; Talisson O. de Queiroz; L. Lima; Braz T. Hora-Júnior; Karina Peres Gramacho; Fabienne Micheli; Julio Cezar M. Cascardo; Wagner Campos Otoni; Abelmon Gesteira; Marcio Gilberto Cardoso Costa

The tropical tree Bixa orellana L. produces a range of secondary metabolites which biochemical and molecular biosynthesis basis are not well understood. In this work we have characterized a set of ESTs from a non-normalized cDNA library of B. orellana seeds to obtain information about the main developmental and metabolic processes taking place in developing seeds and their associated genes. After sequencing a set of randomly selected clones, most of the sequences were assigned with putative functions based on similarity, GO annotations and protein domains. The most abundant transcripts encoded proteins associated with cell wall (prolyl 4-hydroxylase), fatty acid (acyl carrier protein), and hormone/flavonoid (2OG-Fe oxygenase) synthesis, germination (MADS FLC-like protein) and embryo development (AP2/ERF transcription factor) regulation, photosynthesis (chlorophyll a–b binding protein), cell elongation (MAP65-1a), and stress responses (metallothionein- and thaumatin-like proteins). Enzymes were assigned to 16 different metabolic pathways related to both primary and secondary metabolisms. Characterization of two candidate genes of the bixin biosynthetic pathway, BoCCD and BoOMT, showed that they belong, respectively, to the carotenoid-cleavage dioxygenase 4 (CCD4) and caffeic acid O-methyltransferase (COMT) families, and are up-regulated during seed development. It indicates their involvement in the synthesis of this commercially important carotenoid pigment in seeds of B. orellana. Most of the genes identified here are the first representatives of their gene families in B. orellana.


Tree Genetics & Genomes | 2010

Development, characterization, validation, and mapping of SSRs derived from Theobroma cacao L.–Moniliophthora perniciosa interaction ESTs

L. Lima; Karina Peres Gramacho; José Luis Pires; Didier Clément; Uilson Vanderlei Lopes; Nicolas Carels; Abelmon Gesteira; Fernanda Amato Gaiotto; Julio Cezar M. Cascardo; Fabienne Micheli

In this study, we report results of the detection and analysis of SSR markers derived of cacao–Moniliophthora perniciosa expressed sequence tags (ESTs) in relation to cacao resistance to witches’ broom disease (WBD), and we compare the polymorphism of those ESTs (EST-simple sequence repeat (SSR)) with classical neutral SSR markers. A total of 3,487 ESTs was used in this investigation. SSRs were identified in 430 sequences: 277 from the resistant genotype TSH 1188 and 153 from the susceptible one Catongo, totalizing 505 EST-SSRs with three types of motifs: dinucleotides (72.1%), trinucleotides (27.3%), and tetranucleotides (0.6%). EST-SSRs were classified into 16 main categories; most of the EST-SSRs belonged to “Unknown function” and “No homology” categories (45.82%). A high frequency of SSRs was found in the 5’UTR and in the ORF (about 27%) and a low frequency was observed in the 3’UTR (about 8%). Forty-nine EST-SSR primers were designed and evaluated in 21 cacao accessions, 12 revealed polymorphism, having 47 alleles in total, with an average of 3.92 alleles per locus. On the other hand, the 11 genomic SSR markers revealed a total of 47 alleles, with an average of 5.22 alleles per locus. The association of EST-SSR with the genomic SSR enhanced the analysis of genetic distance among the genotypes. Among the 12 polymorphic EST-SSR markers, two were mapped on the F2 Sca 6 × ICS 1 population reference for WBD resistance.


Molecular Biology Reports | 2012

Ectopic expression of a fruit phytoene synthase from Citrus paradisi Macf. promotes abiotic stress tolerance in transgenic tobacco

Luciana C. Cidade; Tahise M. de Oliveira; Amanda F. S. Mendes; Amanda Ferreira Macedo; Eny Iochevet Segal Floh; Abelmon Gesteira; Walter S. Soares-Filho; Marcio Gilberto Cardoso Costa

Abscisic acid (ABA) is an important regulator of plant responses to environmental stresses and an absolute requirement for stress tolerance. Recently, a third phytoene synthase (PSY3) gene paralog was identified in monocots and demonstrated to play a specialized role in stress-induced ABA formation, thus suggesting that the first committed step in carotenogenesis is a key limiting step in ABA biosynthesis. To examine whether the ectopic expression of PSY, other than PSY3, would similarly affect ABA level and stress tolerance, we have produced transgenic tobacco containing a fruit-specific PSY (CpPSY) of grapefruit (Citrus paradisi Macf.). The transgenic plants contained a single- or double-locus insertion and expressed CpPSY at varying transcript levels. In comparison with the wild-type plants, the CpPSY expressing transgenic plants showed a significant increase on root length and shoot biomass under PEG-, NaCl- and mannitol-induced osmotic stress. The enhanced stress tolerance of transgenic plants was correlated with the increased endogenous ABA level and expression of stress-responsive genes, which in turn was correlated with the CpPSY copy number and expression level in different transgenic lines. Collectively, these results provide further evidence that PSY is a key enzyme regulating ABA biosynthesis and that the altered expression of other PSYs in transgenic plants may provide a similar function to that of the monocot’s PSY3 in ABA biosynthesis and stress tolerance. The results also pave the way for further use of CpPSY, as well as other PSYs, as potential candidate genes for engineering tolerance to drought and salt stress in crop plants.


Scientific Reports | 2016

Survival strategies of citrus rootstocks subjected to drought.

Dayse Drielly Souza Santana-Vieira; Luciano Freschi; Lucas Aragão da Hora Almeida; Diogo Henrique Santos de Moraes; Diana Matos Neves; Liziane Marques dos Santos; Fabiana Zanelato Bertolde; Walter dos Santos Soares Filho; Maurício Antônio Coelho Filho; Abelmon Gesteira

Two citrus rootstocks, Rangpur lime (RL) and Sunki Maravilha mandarin (SM), were analyzed either ungrafted or grafted with their reciprocal graft combinations or with shoot scions of two commercial citrus varieties: Valencia orange (VO) and Tahiti acid lime (TAL). All graft combinations were subjected to distinct watering regimes: well-watered, severe drought and rehydration. Growth and water relation parameters, gas exchange as well as sugar and hormone profiles were determined. Data indicated that RL adopted a dehydration avoidance strategy and maintained growth, whereas SM adopted a dehydration tolerance strategy focused on plant survival. Compared with RL, the leaves and roots of SM exhibited higher concentrations of abscisic acid and salicylic acid, which induced drought tolerance, and accumulation of carbohydrates such as trehalose and raffinose, which are important reactive oxygen species scavengers. SM rootstocks were able to transfer their survival strategy to the grafted shoot scions (RL, VO, TAL). Because of their contrasting survival strategies, RL reached the permanent wilting point more quickly than SM whereas SM recovered from prolonged droughts more efficiently than RL. This is one of the most complete studies of drought tolerance mechanisms in citrus crops and is the first to use reciprocal grafting to clarify scion/rootstock interactions.


BMC Plant Biology | 2015

Comparative study of the protein profiles of Sunki mandarin and Rangpur lime plants in response to water deficit

Tahise M. de Oliveira; Fernanda Rabaioli da Silva; Diego Bonatto; Diana Matos Neves; Raphaël Morillon; Bianca Elena Maserti; Maurício Antônio Coelho Filho; Marcio Gilberto Cardoso Costa; Carlos Priminho Pirovani; Abelmon Gesteira

BackgroundRootstocks play a major role in the tolerance of citrus plants to water deficit by controlling and adjusting the water supply to meet the transpiration demand of the shoots. Alterations in protein abundance in citrus roots are crucial for plant adaptation to water deficit. We performed two-dimensional electrophoresis (2-DE) separation followed by LC/MS/MS to assess the proteome responses of the roots of two citrus rootstocks, Rangpur lime (Citrus limonia Osbeck) and ‘Sunki Maravilha’ (Citrus sunki) mandarin, which show contrasting tolerances to water deficits at the physiological and molecular levels.ResultsChanges in the abundance of 36 and 38 proteins in Rangpur lime and ‘Sunki Maravilha’ mandarin, respectively, were observed via LC/MS/MS in response to water deficit. Multivariate principal component analysis (PCA) of the data revealed major changes in the protein profile of ‘Sunki Maravilha’ in response to water deficit. Additionally, proteomics and systems biology analyses allowed for the general elucidation of the major mechanisms associated with the differential responses to water deficit of both varieties. The defense mechanisms of Rangpur lime included changes in the metabolism of carbohydrates and amino acids as well as in the activation of reactive oxygen species (ROS) detoxification and in the levels of proteins involved in water stress defense. In contrast, the adaptation of ‘Sunki Maravilha’ to stress was aided by the activation of DNA repair and processing proteins.ConclusionsOur study reveals that the levels of a number of proteins involved in various cellular pathways are affected during water deficit in the roots of citrus plants. The results show that acclimatization to water deficit involves specific responses in Rangpur lime and ‘Sunki Maravilha’ mandarin. This study provides insights into the effects of drought on the abundance of proteins in the roots of two varieties of citrus rootstocks. In addition, this work allows for a better understanding of the molecular basis of the response to water deficit in citrus. Further analysis is needed to elucidate the behaviors of the key target proteins involved in this response.


Genetics and Molecular Research | 2013

Proteomic response of Moniliophthora perniciosa exposed to pathogenesis-related protein-10 from Theobroma cacao.

F.A.C. Silva; Carlos Priminho Pirovani; S. Menezes; C. Pungartnik; André da Silva Santiago; Marcio Gilberto Cardoso Costa; Fabienne Micheli; Abelmon Gesteira

TcPR-10, a member of the pathogenesis-related protein 10 family, was identified in EST library of interactions between Theobroma cacao and Moniliophthora perniciosa. TcPR-10 has been shown to have antifungal and ribonuclease activities in vitro. This study aimed to identify proteins that are differentially expressed in M. perniciosa in response to TcPR-10 through a proteomic analysis. The fungal hyphae were subjected to one of four treatments: control treatment or 30-, 60- or 120-min treatment with the TcPR-10 protein. Two-dimensional maps revealed 191 differentially expressed proteins, 55 of which were identified by mass spectrometry. The proteins identified in all treatments were divided into the following classes: cell metabolism, stress response, zinc binding, phosphorylation mechanism, transport, autophagy, DNA repair, and oxidoreductases. The predominant class was stress-response proteins (29%), such as heat shock proteins; these proteins exhibited the highest expression levels relative to the control treatment and are known to trigger defense mechanisms against cytotoxic drugs as well as TcPR-10. Oxidoreductases (25%) were overexpressed in the control and in 30-min treatments but exhibited reduced expression at 120 min. These proteins are involved in the repair of damage caused by oxidative stress due to the contact with TcPR- 10. Consistent with the antifungal activity of TcPR-10, several proteins identified were related to detoxification, autophagy or were involved in mechanisms for maintaining fungal homeostasis, such as ergosterol biosynthesis. These results show that the sensitivity of the fungus to TcPR-10 involves several biochemical routes, clarifying the possible modes of action of this antifungal protein.

Collaboration


Dive into the Abelmon Gesteira's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Walter dos Santos Soares Filho

Empresa Brasileira de Pesquisa Agropecuária

View shared research outputs
Top Co-Authors

Avatar

Maurício Antônio Coelho Filho

Empresa Brasileira de Pesquisa Agropecuária

View shared research outputs
Top Co-Authors

Avatar

Maiza Alves Lopes

State University of Feira de Santana

View shared research outputs
Top Co-Authors

Avatar

Raphaël Morillon

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nicolas Carels

Stazione Zoologica Anton Dohrn

View shared research outputs
Researchain Logo
Decentralizing Knowledge