Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Abhay J. Bhatt is active.

Publication


Featured researches published by Abhay J. Bhatt.


Pediatric Research | 2000

Expression of vascular endothelial growth factor and Flk-1 in developing and glucocorticoid-treated mouse lung.

Abhay J. Bhatt; Sanjiv B. Amin; Patricia R. Chess; Richard H. Watkins; William M. Maniscalco

Although the endothelial cell is the most abundant cell type in the differentiated lung, little is known about regulation of lung developmental vasculogenesis. Vascular endothelial growth factor (VEGF) is an endothelial cell mitogen and angiogenic factor that has putative roles in vascular development. Mitogenic actions of VEGF are mediated by the tyrosine kinase receptor KDR/murine homologue fetal liver kinase Flk-1. HLF (hypoxia-inducible factor-like factor) is a transcription factor that increases VEGF gene transcription. Dexamethasone augments lung maturation in fetal and postnatal animals. However, in vitro studies suggest that dexamethasone blocks induction of VEGF. The objectives for the current study were to measure VEGF mRNA and Flk-1 mRNA in developing mouse lung and to measure the effects of dexamethasone treatment in vivo on VEGF and Flk-1 in newborn mouse lung. Our results show that VEGF and Flk-1 messages increase in parallel during normal lung development (d 13 embryonic to adult) and that the distal epithelium expresses VEGF mRNA at all ages examined. Dexamethasone (0.1–5.0 mg·kg−1·d−1) treatment of 6-d-old mice resulted in significantly increased VEGF, HLF, and Flk-1 mRNA. Dexamethasone did not affect cell-specific expression of VEGF, VEGF protein, or proportions of VEGF mRNA splice variants. These data suggest that the developing alveolar epithelium has an important role in regulating alveolar capillary development. In addition, unlike effects on cultured cells, dexamethasone, even in relatively high doses, did not adversely affect VEGF expression in vivo. The relatively high levels of VEGF and Flk-1 mRNA in adult lung imply a role for pulmonary VEGF in endothelial cell maintenance or capillary permeability.


Pediatric Research | 2008

Neuroprotective Effects of Vascular Endothelial Growth Factor Following Hypoxic Ischemic Brain Injury in Neonatal Rats

Yangzheng Feng; Philip G. Rhodes; Abhay J. Bhatt

Vascular Endothelial Growth Factor (VEGF) protects the brain against ischemic injury in adult animals. We evaluated whether VEGF has neuroprotective effects against hypoxic-ischemic (HI) brain injury in newborn rats. Seven-day-old rat pups had the right carotid artery permanently ligated followed by 140 min of hypoxia (8% oxygen). VEGF (5, 10, 20, or 40 ng) or vehicle was administered intracerebroventricularly 5 min after reoxygenation following HI. Brain damage was evaluated by weight loss of the right hemisphere at 22 d after HI and by gross and microscopic morphology. Body weight, rectal temperature, and mortality were not significantly different in the VEGF and vehicle treated groups. VEGF treatment increased brain VEGF levels at 15 min after injection. VEGF (10 and 20 ng) significantly reduced brain weight loss (p < 0.05) and gross brain injury (p < 0.05); however, treatment with 5 or 40 ng did not. VEGF (10 ng) also decreased brain damage assessed by histologic scoring. VEGF increased phosphorylation of protein kinase B (Akt) and extracellular-signal regulated kinase 1/2 (ERK1/2) in the cortex (p < 0.05). These results suggest that VEGF has neuroprotective effects in the neonatal rat HI model that may be related to activation of the Akt/ERK signaling pathway.


Neuroscience | 2011

Dexamethasone pre-treatment protects brain against hypoxic-ischemic injury partially through up-regulation of vascular endothelial growth factor A in neonatal rats.

Yangzheng Feng; Philip G. Rhodes; Abhay J. Bhatt

Dexamethasone (Dex) provides neuroprotection against subsequent hypoxia ischemia (HI) in newborn rats, but the mechanism of this neuroprotection is not well understood. It is known that vascular endothelial growth factor A (VEGF) has neuroprotective effects. The objective of this study was to evaluate the role of the VEGF signaling pathway in the Dex-induced neuroprotection in newborn rats. Seven-day-old rat pups had the right carotid artery permanently ligated followed by 140 or 160 min of hypoxia (8% oxygen). Rat pups received two i.p. injections of either saline or Dex (0.25 mg/kg) at 24 and 4 h before HI exposure. To quantify the effects of a glucocorticoid receptor (GR) blocker, on postnatal day (PD) 6 and 15 min prior to Dex treatment rat pups received s.c. vehicle or RU486 (GR blocker, 60 mg/kg). After 24 h at PD 7, all rat pups had HI as described earlier. To quantify the effects of a VEGFR 2 blocker, at 24 h after Dex/Veh treatment (PD7), SU5416, a VEGFR 2 inhibitor or vehicle was injected intracerebroventricularly in the right hemisphere at 30 min before and 2 h after HI. Dex pre-treatment reduced brain injury and enhanced the HI-induced brain VEGF protein while a GR blocker inhibited these effects. Treatment with VEGFR 2 blocker decreased Dex-induced neuroprotection also. Dex pre-treatment enhanced the HI-induced increase in mRNA expression of VEGF splice variants and decreased the HI-induced reduction of Akt phosphorylation. Additionally, it also decreased HI-induced increase of caspase-3 activity and DNA fragments in neonatal rat brain. We conclude that Dex provides robust neuroprotection against subsequent HI in newborn rats via GR likely with the partial involvement of VEGF signaling pathway.


Brain Research | 2010

Hypoxic preconditioning provides neuroprotection and increases vascular endothelial growth factor A, preserves the phosphorylation of Akt-Ser-473 and diminishes the increase in caspase-3 activity in neonatal rat hypoxic-ischemic model.

Yangzheng Feng; Philip G. Rhodes; Abhay J. Bhatt

Vascular endothelial growth factor A (VEGF) likely plays a role in the hypoxic preconditioning (PC) induced tolerance to subsequent hypoxic-ischemic (HI) injury to the brain. However, limited data is available concerning VEGF in the developing brain after HI following PC. Neuroprotection by VEGF involves activation of Akt which inhibits apoptotic processes that contribute significantly to the brain injury in neonatal HI. We evaluated whether PC provides neuroprotection and affects VEGF, Akt and caspase-3 following HI in the developing rat brain. Newborn rats (6 days) were subjected to normoxia (21% O(2)) or PC (8% O(2)) for 3h followed by 24h of reoxygenation. The rats then had the right carotid artery permanently ligated followed by 140 min of hypoxia (8% O(2)) (HI or PC+HI). Brains from rats at the corresponding age without any exposure to PC or HI were examined for comparison (Sham). PC significantly reduced brain damage as measured by weight loss of the right hemisphere at 22 days after HI and by gross and microscopic morphology. PC amplified and prolonged the induction of mRNA of VEGF splice variants measured by real-time RT-PCR and enhanced the increase in VEGF protein measured by ELISA in brain following HI. PC preserved the phosphorylation of Akt-Ser-473 and diminished the increase in caspase-3 activity in brain following HI. We conclude that PC provides neuroprotection and augments and preserves the increase in VEGF following HI in the newborn rat brain which may play an important role in neuroprotection.


Neuroscience | 2013

Celecoxib attenuates systemic lipopolysaccharide-induced brain inflammation and white matter injury in the neonatal rats.

Lir-Wan Fan; Asuka Kaizaki; Lu-Tai Tien; Yi Pang; Satoshi Numazawa; Abhay J. Bhatt; Zhengwei Cai

Lipopolysaccharide (LPS)-induced white matter injury in the neonatal rat brain is associated with inflammatory processes. Cyclooxygenase-2 (COX-2) can be induced by inflammatory stimuli, such as cytokines and pro-inflammatory molecules, suggesting that COX-2 may be considered as the target for anti-inflammation. The objective of the present study was to examine whether celecoxib, a selective COX-2 inhibitor, can reduce systemic LPS-induced brain inflammation and brain damage. Intraperitoneal (i.p.) injection of LPS (2mg/kg) was performed in postnatal day 5 (P5) of Sprague-Dawley rat pups and celecoxib (20mg/kg) or vehicle was administered i.p. 5 min after LPS injection. The body weight and wire-hanging maneuver test was performed 24h after the LPS exposure, and brain injury was examined after these tests. Systemic LPS exposure resulted in an impairment of behavioral performance and acute brain injury, as indicated by apoptotic death of oligodendrocytes (OLs) and loss of OL immunoreactivity in the neonatal rat brain. Treatments with celecoxib significantly reduced systemic LPS-induced neurobehavioral disturbance and brain damage. Celecoxib administration significantly attenuated systemic LPS-induced increments in the number of activated microglia and astrocytes, concentrations of IL-1β and TNFα, and protein levels of phosphorylated-p38 MAPK in the neonatal rat brain. The protection of celecoxib was also associated with a reduction of systemic LPS-induced COX-2+ cells which were double labeled with GFAP+ (astrocyte) cells. The overall results suggest that celecoxib was capable of attenuating the brain injury and neurobehavioral disturbance induced by systemic LPS exposure, and the protective effects are associated with its anti-inflammatory properties.


Journal of Neuroinflammation | 2013

Celecoxib reduces brain dopaminergic neuronaldysfunction, and improves sensorimotor behavioral performance in neonatal rats exposed to systemic lipopolysaccharide

Asuka Kaizaki; Lu-Tai Tien; Yi Pang; Zhengwei Cai; Sachiko Tanaka; Satoshi Numazawa; Abhay J. Bhatt; Lir-Wan Fan

BackgroundCyclooxygenase-2 (COX-2) is induced in inflammatory cells in response to cytokines and pro-inflammatory molecules, suggesting that COX-2 has a role in the inflammatory process. The objective of the current study was to examine whether celecoxib, a selective COX-2 inhibitor, could ameliorate lipopolysaccharide (LPS)-induced brain inflammation, dopaminergic neuronal dysfunction and sensorimotor behavioral impairments.MethodsIntraperitoneal (i.p.) injection of LPS (2 mg/kg) was performed in rat pups on postnatal Day 5 (P5), and celecoxib (20 mg/kg) or vehicle was administered (i.p.) five minutes after LPS injection. Sensorimotor behavioral tests were carried out 24 h after LPS exposure, and brain injury was examined on P6.ResultsOur results showed that LPS exposure resulted in impairment in sensorimotor behavioral performance and injury to brain dopaminergic neurons, as indicated by loss of tyrosine hydroxylase (TH) immunoreactivity, as well as decreases in mitochondria activity in the rat brain. LPS exposure also led to increases in the expression of α-synuclein and dopamine transporter proteins and enhanced [3H]dopamine uptake. Treatment with celecoxib significantly reduced LPS-induced sensorimotor behavioral disturbances and dopaminergic neuronal dysfunction. Celecoxib administration significantly attenuated LPS-induced increases in the numbers of activated microglia and astrocytes and in the concentration of IL-1β in the neonatal rat brain. The protective effect of celecoxib was also associated with an attenuation of LPS-induced COX-2+ cells, which were double labeled with TH + (dopaminergic neuron) or glial fibrillary acidic protein (GFAP) + (astrocyte) cells.ConclusionSystemic LPS administration induced brain inflammatory responses in neonatal rats; these inflammatory responses included induction of COX-2 expression in TH neurons and astrocytes. Application of the COX-2 inhibitor celecoxib after LPS treatment attenuated the inflammatory response and improved LPS-induced impairment, both biochemically and behaviorally.


Brain Research | 2014

Dexamethasone-induced neuroprotection in hypoxic-ischemic brain injury in newborn rats is partly mediated via Akt activation

Yangzheng Feng; Shiqi Lu; Junming Wang; Praveen Kumar; Lei Zhang; Abhay J. Bhatt

Prior treatment with dexamethasone (Dex) provides neuroprotection against hypoxia ischemia (HI) in newborn rats. Recent studies have shown that the phosphatidylinositol-3-kinase/Akt (PI3K/Akt) pathway plays an important role in the neuroprotection. The objective of this study is to evaluate the role of the PI3K/Akt pathway in the Dex-induced neuroprotection against subsequent HI brain injury. Seven-day-old rat pups had the right carotid artery permanently ligated followed by 160min of hypoxia (8% oxygen). Rat pups received i.p. injection of either saline or Dex (0.25mg/kg) at 24 and 4h before HI exposure. To quantify the effects of a PI3K/Akt inhibitor, wortmannin (1μl of 1μg/μl) or vehicle was injected intracerebroventricularly in the right hemisphere on postnatal day 6 at 30min prior to the first dose of Dex or saline treatment. Dex pretreatment significantly reduced the brain injury following HI which was quantified by the decrease in cleaved caspase-3 protein as well as cleaved caspase-3 and TUNEL positive cells at 24h and percent loss of ipsilateral hemisphere weight at 22d after HI, while wortmannin partially reversed these effects. We conclude that Dex provides robust neuroprotection against subsequent HI in newborn rats in part via activation of PI3/Akt pathway.


Journal of Neuroscience Research | 2013

Dexamethasone induces apoptosis of progenitor cells in the subventricular zone and dentate gyrus of developing rat brain

Abhay J. Bhatt; Yangzheng Feng; Junming Wang; Mobolaji Famuyide; Kelly Hersey

The use of dexamethasone in premature infants to prevent and/or treat bronchopulmonary dysplasia adversely affects neurocognitive development and is associated with cerebral palsy. The underlying mechanisms of these effects are multifactorial and likely include apoptosis. The objective of this study was to confirm whether dexamethasone causes apoptosis in different regions of the developing rat brain. On postnatal day 2, pups in each litter were randomly divided into the dexamethasone‐treated (n = 91) or vehicle‐treated (n = 92) groups. Rat pups in the dexamethasone group received tapering doses of dexamethasone on postnatal days 3–6 (0.5, 0.25, 0.125, and 0.06 mg/kg/day, respectively). Dexamethasone treatment significantly decreased the gain of body and brain weight and increased brain caspase‐3 activity, DNA fragments, terminal deoxynucleotidyl transferase‐mediated dUTP nick end labeling, and cleaved caspse‐3‐positive cells at 24 hr after treatment. Dexamethasone increased cleaved caspse‐3‐positive cells in the cortex, thalamus, hippocampus, cerebellum, dentate gyrus, and subventricular zone. Double‐immunofluorescence studies show that progenitor cells in the subventricular zone and dentate gyrus preferentially undergo apoptosis following dexamethasone exposure. These results indicate that dexamethasone‐induced apoptosis in immature cells in developing brain is one of the mechanisms of its neurodegenerative effects in newborn rats.


Neuroscience | 2009

Dexamethasone induces neurodegeneration but also up-regulates vascular endothelial growth factor A in neonatal rat brains

Yangzheng Feng; Philip G. Rhodes; H. Liu; Abhay J. Bhatt

The use of dexamethasone (Dex) in premature infants to prevent and/or treat bronchopulmonary dysplasia can adversely affect early neurodevelopment and probably result in loss of cerebral volume. Vascular endothelial growth factor A (VEGF), specifically VEGF(164) isoform has neurotrophic, neuroprotective and neurogenesis enhancing effects. Previous studies have demonstrated that Dex usually down-regulates VEGF. In the present study we investigated the effect of Dex on brain growth and VEGF in the neonatal rat brain. The pups in each litter were divided into the vehicle (n=84) or Dex-treated (n=98) groups. Rat pups in the Dex group received one of three different regimens of i.p. Dex which included tapering doses on postnatal days 3-6 (0.5, 0.25, 0.125 and 0.06 mg/kg, respectively), or repeated doses of 0.5 or 1 mg/kg/day on postnatal days 4-6 or single dose of 0.031, 0.06, 0.125, 0.25 or 0.5 mg/kg on postnatal day 6. The total VEGF protein and mRNA expression of the three main VEGF splice variants (VEGF(120), VEGF(164), and VEGF(188)) were measured in the rat pup brain using enzyme-linked immunosorbent assay and real-time reverse transcription polymerase chain reaction, respectively. Treatment with Dex significantly decreased the gain of body and brain weight. The tapering and repeated doses of Dex significantly increased caspase-3 activity, VEGF protein and the expression of mRNA of VEGF(164) and VEGF(188) splice variants but the single dose did not. We conclude that Dex is neurodegenerative in the developing brain but also increases VEGF which may play a neurotrophic and neuroprotective role.


Pediatric Research | 2007

Grape Seed Extract Given Three Hours After Injury Suppresses Lipid Peroxidation and Reduces Hypoxic-Ischemic Brain Injury in Neonatal Rats

Yangzheng Feng; Yi-Ming Liu; Michael LeBlanc; Abhay J. Bhatt; Philip G. Rhodes

We have reported that pretreatment with grape seed extract (GSE), a potent antioxidant, is neuroprotective. This study examined whether treatment after injury with GSE is protective. Seven-day-old rat pups had the right carotid artery ligated, and then 2.5 h of 8% oxygen. GSE (50 mg/kg) or vehicle was administered by i.p. initial injection at 5 min to 5 h after reoxygenation, with an additional three doses within 26 h after injury. Brain damage was evaluated by weight deficit of the right hemisphere at 22 d after hypoxia. Treatment at 3 h after reoxygenation reduced brain weight loss from 21.0 ± 3.3% in vehicle-treated pups (n = 31) to 11.4 ± 2.8% in treated pups (n = 31, p < 0.05). GSE lowered body temperature, but reduced brain injury even when body temperature was controlled. GSE reduced neurofunctional abnormalities caused by the hypoxia-ischemia (HI). GSE reduced a HI induced increase in 8-isoprostaglandin F2α (8-isoPGF2α) and reduced an HI-induced increase in the proapoptotic protein c-jun in the brain cortex. GSE up to 3 h after reoxygenation reduces brain injury in rat pups, probably by suppressing lipid peroxidation and the proapoptotic protein c-jun.

Collaboration


Dive into the Abhay J. Bhatt's collaboration.

Top Co-Authors

Avatar

Yi Pang

University of Mississippi Medical Center

View shared research outputs
Top Co-Authors

Avatar

Lir-Wan Fan

University of Mississippi Medical Center

View shared research outputs
Top Co-Authors

Avatar

Yangzheng Feng

University of Mississippi Medical Center

View shared research outputs
Top Co-Authors

Avatar

Lu-Tai Tien

Fu Jen Catholic University

View shared research outputs
Top Co-Authors

Avatar

Zhengwei Cai

University of Mississippi Medical Center

View shared research outputs
Top Co-Authors

Avatar

Philip G. Rhodes

University of Mississippi Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Junming Wang

University of Mississippi Medical Center

View shared research outputs
Top Co-Authors

Avatar

Rick C.S. Lin

University of Mississippi Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge