Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Abhaya K. Datye is active.

Publication


Featured researches published by Abhaya K. Datye.


Catalysis Reviews-science and Engineering | 2002

CATALYTIC COMBUSTION OF METHANE OVER PALLADIUM-BASED CATALYSTS

Dragos Ciuparu; Maxim Lyubovsky; Eric I. Altman; Lisa D. Pfefferle; Abhaya K. Datye

Palladium-based catalysts are widely applied in exhaust catalytic converter and catalytic combustion systems. The mechanism for methane oxidation on a Pd-based catalyst is complex. Catalyst activity is influenced by variations in the process pressure and temperature, by the gas mixture composition, by the type of support and various additives, and by pretreatment under reducing or oxidizing atmospheres. In this paper, we review the literature on supported Pd catalysts for combustion of methane. The mechanisms involved are discussed taking into consideration the oxidation/reduction mechanisms for supported palladium, poisoning, restructuring, the form of oxygen on the surface, methane activation over Pd and PdO phases, and transient behavior. Our review helps explain the array of experimental results reported in the literature.


Accounts of Chemical Research | 2013

Sintering of catalytic nanoparticles: particle migration or Ostwald ripening?

Thomas Willum Hansen; Andrew T. DeLaRiva; Sivakumar R. Challa; Abhaya K. Datye

Metal nanoparticles contain the active sites in heterogeneous catalysts, which are important for many industrial applications including the production of clean fuels, chemicals and pharmaceuticals, and the cleanup of exhaust from automobiles and stationary power plants. Sintering, or thermal deactivation, is an important mechanism for the loss of catalyst activity. This is especially true for high temperature catalytic processes, such as steam reforming, automotive exhaust treatment, or catalytic combustion. With dwindling supplies of precious metals and increasing demand, fundamental understanding of catalyst sintering is very important for achieving clean energy and a clean environment, and for efficient chemical conversion processes with atom selectivity. Scientists have proposed two mechanisms for sintering of nanoparticles: particle migration and coalescence (PMC) and Ostwald ripening (OR). PMC involves the mobility of particles in a Brownian-like motion on the support surface, with subsequent coalescence leading to nanoparticle growth. In contrast, OR involves the migration of adatoms or mobile molecular species, driven by differences in free energy and local adatom concentrations on the support surface. In this Account, we divide the process of sintering into three phases. Phase I involves rapid loss in catalyst activity (or surface area), phase II is where sintering slows down, and phase III is where the catalyst may reach a stable performance. Much of the previous work is based on inferences from catalysts that were observed before and after long term treatments. While the general phenomena can be captured correctly, the mechanisms cannot be determined. Advancements in the techniques of in situ TEM allow us to observe catalysts at elevated temperatures under working conditions. We review recent evidence obtained via in situ methods to determine the relative importance of PMC and OR in each of these phases of catalyst sintering. The evidence suggests that, in phase I, OR is responsible for the rapid loss of activity that occurs when particles are very small. Surprisingly, very little PMC is observed in this phase. Instead, the rapid loss of activity is caused by the disappearance of the smallest particles. These findings are in good agreement with representative atomistic simulations of sintering. In phase II, sintering slows down since the smallest particles have disappeared. We now see a combination of PMC and OR, but do not fully understand the relative contribution of each of these processes to the overall rates of sintering. In phase III, the particles have grown large and other parasitic phenomena, such as support restructuring, can become important, especially at high temperatures. Examining the evolution of particle size and surface area with time, we do not see a stable or equilibrium state, especially for catalysts operating at elevated temperatures. In conclusion, the recent literature, especially on in situ studies, shows that OR is the dominant process causing the growth of nanoparticle size. Consequently, this leads to the loss of surface area and activity. While particle migration could be controlled through suitable structuring of catalyst supports, it is more difficult to control the mobility of atomically dispersed species. These insights into the mechanisms of sintering could help to develop sinter-resistant catalysts, with the ultimate goal of designing catalysts that are self-healing.


Journal of the American Chemical Society | 2011

Selective Hydrogenolysis of Polyols and Cyclic Ethers over Bifunctional Surface Sites on Rhodium–Rhenium Catalysts

Mei Chia; Yomaira J. Pagán-Torres; David D. Hibbitts; Qiaohua Tan; Hien N. Pham; Abhaya K. Datye; Matthew Neurock; Robert J. Davis; James A. Dumesic

A ReO(x)-promoted Rh/C catalyst is shown to be selective in the hydrogenolysis of secondary C-O bonds for a broad range of cyclic ethers and polyols, these being important classes of compounds in biomass-derived feedstocks. Experimentally observed reactivity trends, NH(3) temperature-programmed desorption (TPD) profiles, and results from theoretical calculations based on density functional theory (DFT) are consistent with the hypothesis of a bifunctional catalyst that facilitates selective hydrogenolysis of C-O bonds by acid-catalyzed ring-opening and dehydration reactions coupled with metal-catalyzed hydrogenation. The presence of surface acid sites on 4 wt % Rh-ReO(x)/C (1:0.5) was confirmed by NH(3) TPD, and the estimated acid site density and standard enthalpy of NH(3) adsorption were 40 μmol g(-1) and -100 kJ mol(-1), respectively. Results from DFT calculations suggest that hydroxyl groups on rhenium atoms associated with rhodium are acidic, due to the strong binding of oxygen atoms by rhenium, and these groups are likely responsible for proton donation leading to the formation of carbenium ion transition states. Accordingly, the observed reactivity trends are consistent with the stabilization of resulting carbenium ion structures that form upon ring-opening or dehydration. The presence of hydroxyl groups that reside α to carbon in the C-O bond undergoing scission can form oxocarbenium ion intermediates that significantly stabilize the resulting transition states. The mechanistic insights from this work may be extended to provide a general description of a new class of bifunctional heterogeneous catalysts, based on the combination of a highly reducible metal with an oxophilic metal, for the selective C-O hydrogenolysis of biomass-derived feedstocks.


Science | 2016

Thermally stable single-atom platinum-on-ceria catalysts via atom trapping

John Jones; Haifeng Xiong; Andrew T. DeLaRiva; Eric J. Peterson; Hien N. Pham; Sivakumar R. Challa; Gongshin Qi; Se Oh; Michelle H. Wiebenga; Xavier Isidro Pereira Hernandez; Yong Wang; Abhaya K. Datye

Hot single-atom catalysts For heterogeneous catalysts made from precious metal nanoparticles adsorbed on metal oxides, high temperatures are the enemy. The metal atoms become mobile and the small particles grow larger, causing a loss in surface area and hence in activity. Jones et al. turned this process to their advantage and used these mobile species to create single-atom platinum catalysts. The platinum on alumina supported transfers in air at 800°C to ceria supports to form highly active catalysts with isolated metal cations. Science, this issue p. 150 Exposure of a ceria support to mobile platinum species at high temperatures traps single atoms at the most stable sites. Catalysts based on single atoms of scarce precious metals can lead to more efficient use through enhanced reactivity and selectivity. However, single atoms on catalyst supports can be mobile and aggregate into nanoparticles when heated at elevated temperatures. High temperatures are detrimental to catalyst performance unless these mobile atoms can be trapped. We used ceria powders having similar surface areas but different exposed surface facets. When mixed with a platinum/aluminum oxide catalyst and aged in air at 800°C, the platinum transferred to the ceria and was trapped. Polyhedral ceria and nanorods were more effective than ceria cubes at anchoring the platinum. Performing synthesis at high temperatures ensures that only the most stable binding sites are occupied, yielding a sinter-resistant, atomically dispersed catalyst.


Nature Communications | 2014

Low-temperature carbon monoxide oxidation catalysed by regenerable atomically dispersed palladium on alumina

Eric J. Peterson; Andrew T. DeLaRiva; Sen Lin; Ryan Johnson; Hua Guo; Jeffrey T. Miller; Ja Hun Kwak; Charles H. F. Peden; Boris Kiefer; Lawrence F. Allard; Fabio H. Ribeiro; Abhaya K. Datye

Catalysis by single isolated atoms of precious metals has attracted much recent interest, as it promises the ultimate in atom efficiency. Most previous reports are on reducible oxide supports. Here we show that isolated palladium atoms can be catalytically active on industrially relevant γ-alumina supports. The addition of lanthanum oxide to the alumina, long known for its ability to improve alumina stability, is found to also help in the stabilization of isolated palladium atoms. Aberration-corrected scanning transmission electron microscopy and operando X-ray absorption spectroscopy confirm the presence of intermingled palladium and lanthanum on the γ-alumina surface. Carbon monoxide oxidation reactivity measurements show onset of catalytic activity at 40 °C. The catalyst activity can be regenerated by oxidation at 700 °C in air. The high-temperature stability and regenerability of these ionic palladium species make this catalyst system of potential interest for low-temperature exhaust treatment catalysts.


Catalysis Letters | 2003

Acetylene hydrogenation on Au-based catalysts

Tushar V. Choudhary; C. Sivadinarayana; Abhaya K. Datye; D. Kumar; D. W. Goodman

Hydrogenation of acetylene has been investigated on Au/TiO2, Pd/TiO2 and Au-Pd/TiO2 catalysts at high acetylene conversion levels. The Au/TiO2 catalyst (avg. particle size: 4.6 nm) synthesized by the temperature-programmed reduction-oxidation of an Au-phosphine complex on TiO2 showed a remarkably high selectivity to ethylene formation even at 100% acetylene conversion. Au/TiO2 prepared by the conventional incipient wet impregnation method (avg. particle size: 30 nm), on the other hand, showed negligible activity for acetylene hydrogenation. Although the Au catalysts showed a high selectivity for ethylene, the acetylene conversion activity and catalyst stability were inferior to the Pd-based catalysts. Au-Pd catalysts prepared by the redox method showed high acetylene conversions as well as high selectivity for ethylene. Interestingly Au-Pd catalysts prepared by depositing Pd via the incipient wetness method on Au/TiO2 showed very poor selectivity (comparable to mono-metallic Pd catalysts) for ethylene. High-resolution transmission electron microscopy (TEM) studies coupled with energy dispersive X-ray spectroscopy (EDS) showed that while the redox method produced bimetallic Au-Pd catalysts, the latter method produced individual Pd and Au particles on the support.


Advanced Materials | 2002

Monodisperse mesoporous silica microspheres formed by evaporation-induced self-assembly of surfactant templates in aerosoles

Timothy L. Ward; Jaime Bravo; Abhaya K. Datye; Gabriel P. Lopez; Hien N. Pham; Shailendra Rathod; Venkata R. Goparaju

The present invention provides for evaporation induced self-assembly (EISA) within microdroplets produced by a vibrating orifice aerosol generator (VOAG) for the production of monodisperse mesoporous silica particles. The process of the present invention exploits the concentration of evaporating droplets to induce the organization of various amphiphilic molecules, effectively partitioning a silica precursor to the hydrophilic regions of the structure. Promotion of silica condensation, followed by removal of the surfactant, provides ordered spherical mesoporous particles.


Journal of the American Chemical Society | 2011

Relating Rates of Catalyst Sintering to the Disappearance of Individual Nanoparticles during Ostwald Ripening

Sivakumar R. Challa; Andrew T. DeLaRiva; Thomas Willum Hansen; Stig Helveg; Jens Sehested; Poul L. Hansen; Fernando H. Garzon; Abhaya K. Datye

Sintering of nanoparticles (NPs) of Ni supported on MgAl(2)O(4) was monitored in situ using transmission electron microscopy (TEM) during exposure to an equimolar mixture of H(2) and H(2)O at a pressure of 3.6 mbar at 750 °C, conditions relevant to methane steam reforming. The TEM images revealed an increase in the mean particle size due to disappearance of smaller, immobile NPs and the resultant growth of the larger NPs. A new approach for predicting the long-term sintering of NPs is presented wherein microscopic observations of the ripening of individual NPs (over a span of a few seconds) are used to extract energetic parameters that allow a description of the collective behavior of the entire population of NPs (over several tens of minutes).


Chemcatchem | 2010

X-ray Absorption Spectroscopy of Bimetallic Pt-Re Catalysts for Hydrogenolysis of Glycerol to Propanediols

Oliver M. Daniel; Andrew T. DeLaRiva; Edward L. Kunkes; Abhaya K. Datye; James A. Dumesic; Robert J. Davis

Bimetallic Pt–Re nanoparticles supported on Norit carbon were effective at converting aqueous glycerol to 1,3 (34 %) and 1,2 (33 %) propanediol at 443 K under 4 MPa of H2. Results from X‐ray absorption spectroscopy and analytical transmission electron microscopy confirmed that the nanoparticles were indeed bimetallic, with a particle size less than 2 nm in diameter. The Pt LIII near edge spectra indicated that the Pt was reduced to the metallic state by treatment in H2 at 473 K, but that a partial positive charge remained on the Re. These oxidized Re species could be associated with charged Re atoms dispersed on the carbon support because spillover of H atoms from Pt was required to reduce Re in the bimetallic particles.


Catalysis Reviews-science and Engineering | 1992

The study of heterogeneous catalysts by high-resolution transmission electron microscopy

Abhaya K. Datye; David J. Smith

Abstract Advances in instrumentation have made it possible in recent years to study the microstructure of inorganic materials at atomic resolution using the technique of high-resolution electron microscopy (HREM). Details of instrumentation have been described elsewhere [l], and applications and trends for HREM have recently been reviewed [2]. Although HREM is primarily a technique for studying bulk defects, it is increasingly also being applied in the profile-imaging mode to derive information about surfaces [3]. The high spatial resolution of the electron microscope makes it a valuable tool for the characterization of heterogeneous catalysts. This is evidenced by the growing number of studies wherein electron micrographs are being used to describe the morphology of a particular catalyst. Profile imaging is proving particularly useful in this regard for following changes in surface structure as a function of treatment conditions [4].

Collaboration


Dive into the Abhaya K. Datye's collaboration.

Top Co-Authors

Avatar

Hien N. Pham

University of New Mexico

View shared research outputs
Top Co-Authors

Avatar

Yong Wang

Washington State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ayman M. Karim

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Haifeng Xiong

University of New Mexico

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lawrence F. Allard

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ganesh Vanamu

University of New Mexico

View shared research outputs
Top Co-Authors

Avatar

Barr Halevi

University of New Mexico

View shared research outputs
Researchain Logo
Decentralizing Knowledge