Abhijeet J. Karkamkar
Pacific Northwest National Laboratory
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Abhijeet J. Karkamkar.
Chemical Communications | 2008
Zhitao Xiong; Yong Shen Chua; Guotao Wu; Wang Xu; Ping Chen; Wendy J. Shaw; Abhijeet J. Karkamkar; John C. Linehan; Tricia D. Smurthwaite; Thomas Autrey
The two-step reaction between LiH and NH(3)BH(3) in THF leads to the production of more than 14 wt% of hydrogen at 40 degrees C.
Chemical Communications | 2010
Yong Shen Chua; Guotao Wu; Zhitao Xiong; Abhijeet J. Karkamkar; Jianping Guo; Mingxian Jian; Ming Wah Wong; Thomas Autrey; Ping Chen
Magnesium amidoborane monoammoniate (Mg(NH(2)BH(3))(2) x NH(3)) which crystallizes in a monoclinic structure (space group P2(1)/a) has been synthesized by reacting MgNH with NH(3)BH(3). Dihydrogen bonds are established between coordinated NH(3) and BH(3) of [NH(2)BH(3)](-) in the structure, promoting stoichiometric conversion of NH(3) to H(2).
Chemical Communications | 2010
Mark E. Bowden; David J. Heldebrant; Abhijeet J. Karkamkar; Thomas Proffen; Gregory K. Schenter; Thomas Autrey
[(NH(3))(2)BH(2)](+)[BH(4)](-) is formed from the room temperature decomposition of NH(4)(+)BH(4)(-), via a NH(3)BH(3) intermediate. Its crystal structure has been determined and contains disordered BH(4)(-) ions in 2 distinct sites. Hydrogen release is similar to that from NH(3)BH(3) but with faster kinetics.
Energy and Environmental Science | 2011
Doinita Neiner; Abhijeet J. Karkamkar; Mark E. Bowden; Young Joon Choi; Avery T. Luedtke; Jamelyn D. Holladay; Allison M. Fisher; Nathaniel K. Szymczak; Thomas Autrey
The thermodynamics and kinetics of hydrogen (H2) release from ethane 1,2-di-amineborane (EDAB, BH3NH2CH2CH2NH2BH3) were measured using Calvet and differential scanning calorimetry (DSC), pressure-composition isotherms, and volumetric gas-burette experiments. The results presented here indicate that EDAB releases ∼ 10 wt.% H2 at temperatures ranging from 100 °C to 200 °C in two moderately exothermic steps, approximately −10 ± 1 kJ mol−1 H2 and −3.8 ± 1 kJ mol−1 H2. Isothermal kinetic analysis shows that EDAB is more stable than ammonia borane (AB) at temperatures lower than 100 °C; however, the rates of hydrogen release are faster for EDAB than for AB at temperatures higher than 120 °C. In addition, no volatile impurities in the H2 released by EDAB were detected by mass spectrometry upon heating with 1 °C min−1 to 200 °C in a calorimeter.
Journal of the American Chemical Society | 2015
Gang Chen; Lev N. Zakharov; Mark E. Bowden; Abhijeet J. Karkamkar; Sean M. Whittemore; Edward B. Garner; Tanya C. Mikulas; David A. Dixon; Tom Autrey; Shih-Yuan Liu
A critical component for the successful development of fuel cell applications is hydrogen storage. For back-up power applications, where long storage periods under extreme temperatures are expected, the thermal stability of the storage material is particularly important. Here, we describe the development of an unusually kinetically stable chemical hydrogen storage material with a H2 storage capacity of 4.7 wt%. The compound, which is the first reported parental BN isostere of cyclohexane featuring two BN units, is thermally stable up to 150 °C both in solution and as a neat material. Yet, it can be activated to rapidly desorb H2 at room temperature in the presence of a catalyst without releasing other detectable volatile contaminants. We also disclose the isolation and characterization of two cage compounds with S4 symmetry from the H2 desorption reactions.
Faraday Discussions | 2011
Thomas Autrey; Mark E. Bowden; Abhijeet J. Karkamkar
Molecular complexes of Lewis acid-base pairs can be used to activate molecular hydrogen for applications ranging from hydrogen storage for fuel cells to catalytic hydrogenation reactions. In this paper, we examine the factors that determine the thermodynamics of hydrogen activation of a Lewis acid-base pair using the pedagogical examples of ammonia borane (NH3BH3, AB) and ammonium borohydride ([NH4][BH4], ABH2). At ambient temperatures, ABH2 loses hydrogen to form the Lewis acid-base complex AB, suggesting that free energy drives the reaction to release hydrogen. However, direct measurement of the reaction enthalpy is not straightforward given the complex decomposition pathways leading to the formation of the diammoniate of diborane ([NH3BH2NH3][BH4], DADB). In this work, we compare two approaches for deriving the thermodynamic relationships among AB, DADB, and ABH2.
Journal of Physical Chemistry A | 2008
Herman M. Cho; Wendy J. Shaw; Venci M. Parvanov; Gregory K. Schenter; Abhijeet J. Karkamkar; Nancy J. Hess; Christopher J. Mundy; Shawn M. Kathmann; Jesse A. Sears; Andrew S. Lipton; Paul D. Ellis; Thomas Autrey
Variable temperature 2H NMR experiments on the orthorhombic phase of selectively deuterated NH3BH3 spanning the static to fast exchange limits of the borane and amine motions are reported. New values of the electric field gradient (EFG) tensor parameters have been obtained from the static 2H spectra of V(zz) = 1.652 (+/-0.082) x 10(21) V/m(2) and eta = 0.00 +/- 0.05 for the borane hydrogens and V(zz) = 2.883 (+/-0.144) x 10(21) V/m(2) and eta = 0.00 +/- 0.05 for the amine hydrogens. The molecular symmetry inferred from the observation of equal EFG tensors for the three borane hydrogens and likewise for the three amine hydrogens is in sharp contrast with the C(s) symmetry derived from diffraction studies. The origin of the apparent discrepancy has been investigated using molecular dynamics methods in combination with electronic structure calculations of NMR parameters, bond lengths, and bond angles. The computation of parameters from a statistical ensemble rather than from a single set of atomic Cartesian coordinates gives values that are in close quantitative agreement with the 2H NMR electric field gradient tensor measurements and are more consistent with the molecular symmetry revealed by the NMR spectra.
Inorganic Chemistry | 2014
Mahendra Yadav; John C. Linehan; Abhijeet J. Karkamkar; Edwin F. van der Eide; David J. Heldebrant
Combined capture of CO2 and subsequent hydrogenation allows for base/methanol-promoted homogeneous hydrogenation of CO2 to methyl formate. The CO2, captured as an amidinium methyl carbonate, reacts with H2 with no applied pressure of CO2 in the presence of a catalyst to produce sequentially amidinium formate, then methyl formate. The production of methyl formate releases the base back into the system, thereby reducing one of the flaws of catalytic hydrogenations of CO2: the notable consumption of one mole of base per mole of formate produced. The reaction proceeds under 20 atm of H2 with selectivity to formate favored by the presence of excess base and lower temperatures (110 °C), while excess alcohol and higher temperatures (140 °C) favor methyl formate. Known CO2 hydrogenation catalysts are active in the ionic liquid medium with turnover numbers as high as 5000. It is unclear as to whether the alkyl carbonate or CO2 is hydrogenated, as we show they are in equilibrium in this system. The availability of both CO2 and the alkyl carbonate as reactive species may result in new catalyst designs and free energy pathways for CO2 that may entail different selectivity or kinetic activity.
Journal of Chemical Physics | 2009
Shawn M. Kathmann; Vencislav M. Parvanov; Gregory K. Schenter; Ashley C. Stowe; Luke L. Daemen; Monika Hartl; John C. Linehan; Nancy J. Hess; Abhijeet J. Karkamkar; Thomas Autrey
Incoherent inelastic neutron scattering is used to probe the effects of dihydrogen bonding on the vibrational dynamics in the molecular crystal of ammonia borane. The thermal neutron energy loss spectra of (11)B enriched ammonia borane isotopomers ((11)BH(3)NH(3), (11)BD(3)NH(3), and (11)BH(3)ND(3)) are presented and compared to the vibrational power spectrum calculated using ab initio molecular dynamics. A harmonic vibrational analysis on NH(3)BH(3) clusters was also explored to check for consistency with experiment and the power spectrum. The measured neutron spectra and computed ab initio power spectrum compare extremely well (50-500 cm(-1)). Some assignment of modes to simple harmonic motion, e.g., NH(3) and BH(3) torsion in the molecular crystal is possible, and it is confirmed that the lowest modes are dominated by collective motion. We show that the vibrational dynamics as modeled with ab initio molecular dynamics provides a more complete description of anharmonic and collective dynamics in the low frequency region of the inelastic incoherent neutron scattering spectra when compared to the conventional harmonic approach.
Topics in Catalysis | 2015
Birgit Schwenzer; Lelia Cosimbescu; Vassiliki Alexandra Glezakou; Abhijeet J. Karkamkar; Zheming Wang; Robert S. Weber
The composition of the reaction medium near photoactive catalytic sites can be inferred from the solvatochromism of the absorption and emission spectra of the wetted sites, which depend on the polarizability of the fluid. In brief, solvatochromism measures the interaction of the dipole moments of the ground and excited states with the electric field imposed by the solvent shell: a field, which does not relax on the time scale of the absorption or emission events. To establish the utility of the technique for inorganic catalysts that operate in complex reaction media, such as encountered in the upgrading of biogenic fuels, we have measured the solvatochromism of a common, structural feature of metal oxide catalysts, mono-oxide or dioxide of a transition metal prepared by incorporating the OM or O2M moiety into the framework of a polyhedral oligomeric silsesquioxane (POSS). In toluene, cyclohexene, chloroform and tetrahydrofuran, POSS-ligated oxometalates exhibit strong ligand-to-metal charge-transfer bands in their UV–visible absorption and emission spectra. From the solvatochromism of the chromophores dissolved in toluene-chloroform mixtures we inferred an unexpectedly strong, preferential solvation of the chromophore even when all three components (oxometalate and the two solvents) were highly miscible.Graphical Abstract