Abhijeet Kulkarni
Savitribai Phule Pune University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Abhijeet Kulkarni.
Biochimie | 2013
Manali Joshi; Abhijeet Kulkarni; Jayanta K. Pal
Eukaryotic initiation factor 2 alpha kinases (eIF-2α kinases) are key mediators of stress response in cells. In mammalian cells, there are four eIF-2α kinases, namely HRI (Heme-Regulated Inhibitor), PKR (RNA-dependent Protein Kinase), PERK (PKR-like ER Kinase) and GCN2 (General Control Non-derepressible 2). These kinases get activated during diverse cytoplasmic stress conditions and phosphorylate the alpha-subunit of eIF2, leading to global protein synthesis inhibition. Therefore, eIF-2α kinases play a vital role in various cellular processes such as proliferation, differentiation, apoptosis and cell signaling. Deregulation of eIF-2α kinases and protein synthesis has been linked to numerous pathological conditions such as certain cancers, anemia and neurodegenerative disorders. Thus, modulation of these kinases by small molecules holds a great therapeutic promise. In this review we have compiled the available information on inhibitors and activators of these four eIF-2α kinases. The review concludes with a note on the selectivity issue of currently available modulators and future perspectives for the design of specific small molecule probes.
Free Radical Research | 2009
Abhijeet Kulkarni; Smriti P.K. Mittal; T.P.A. Devasagayam; Jayanta K. Pal
Oxidative stress leads to perturbation of a variety of cellular processes resulting in inhibition of cell proliferation. This study has determined the effect of oxidative stress on protein synthesis in human K562 cells using a hydrophilic peroxyl radical initiator, AAPH and H2O2. The results indicated that oxidative stress leads to a significant decrease in the rate of protein synthesis caused due to induced activation as well as expression of the erythroid cell-specific eIF-2α kinase, called the Heme Regulated Inhibitor (HRI). Elevated levels of HRI expression and activity were accompanied by increased lipid peroxidation and decreased cell proliferation. Further, oxidative stress also caused inactivation of p34cdc2 kinase, thereby arresting cell division leading to apoptosis. Thus, the data provides the mechanism of inhibition of protein synthesis and perturbation of a cell cycle regulatory protein leading to inhibition of cell proliferation in K562 cells during oxidative stress.
Scientific Reports | 2016
Pandurang Kolekar; Abhijeet Pataskar; Urmila Kulkarni-Kale; Jayanta K. Pal; Abhijeet Kulkarni
Cellular mRNAs are predominantly translated in a cap-dependent manner. However, some viral and a subset of cellular mRNAs initiate their translation in a cap-independent manner. This requires presence of a structured RNA element, known as, Internal Ribosome Entry Site (IRES) in their 5′ untranslated regions (UTRs). Experimental demonstration of IRES in UTR remains a challenging task. Computational prediction of IRES merely based on sequence and structure conservation is also difficult, particularly for cellular IRES. A web server, IRESPred is developed for prediction of both viral and cellular IRES using Support Vector Machine (SVM). The predictive model was built using 35 features that are based on sequence and structural properties of UTRs and the probabilities of interactions between UTR and small subunit ribosomal proteins (SSRPs). The model was found to have 75.51% accuracy, 75.75% sensitivity, 75.25% specificity, 75.75% precision and Matthews Correlation Coefficient (MCC) of 0.51 in blind testing. IRESPred was found to perform better than the only available viral IRES prediction server, VIPS. The IRESPred server is freely available at http://bioinfo.net.in/IRESPred/.
The International Journal of Biochemistry & Cell Biology | 2014
Smriti P.K. Mittal; Abhijeet Kulkarni; Jinumary Mathai; Samit Chattopadhyay; Jayanta K. Pal
The heme-regulated inhibitor (HRI), a regulator of translation initiation, is known to be activated and upregulated, and it acts as either a cytoprotective player promoting cell survival or as an inducer of apoptosis during stress. However, the exact role of HRI in these two responses has not been elucidated. In the present investigation, using human cell lines, we attempted to unravel the molecular mechanism(s) of HRI-mediated differential response and the involved signaling pathways. While during low dose (5 μM) lead acetate treatment, cells did not show any diminished cell survival, significant level of apoptosis was observed at high dose (100 μM) lead acetate. Based on the results of an interactome analysis, we determined the interaction of HRI with PI-3-Kca, only at a low dose stress, which is followed by phosphorylation and activation of its downstream target, AKT. Interestingly, such an interaction and AKT activation was not observed at a high dose stress. On the other hand, an increased level of APAF-1 and activation of caspases were observed. These results indicate a critical role of HRI in cell survival during low dose stress, and in apoptosis at high dose stress. Furthermore, HRI knockdown cells are sensitized even to 5 μM lead treatment leading to caspase activation and apoptosis. Our results taken together thus elucidate for the first time the molecular mechanism and the involved signaling pathways for dose-dependent differential response of mammalian cells to lead exposure. These findings thus suggest the possibility of using HRI downregulation as a therapeutic strategy to sensitize cancer cells subjected to apoptogenic drugs.
Gene | 2018
Khalid Hussain; Kanak Mungikar; Abhijeet Kulkarni; Avinash Kamble
Upon confrontation with unfavourable conditions, plants invoke a very complex set of biochemical and physiological reactions and alter gene expression patterns to combat the situations. MicroRNAs (miRNAs), a class of small non-coding RNA, contribute extensively in regulation of gene expression through translation inhibition or degradation of their target mRNAs during such conditions. Therefore, identification of miRNAs and their targets holds importance in understanding the regulatory networks triggered during stress. Structure and sequence similarity based in silico prediction of miRNAs in Cajanus cajan L. (Pigeonpea) draft genome sequence has been carried out earlier. These annotations also appear in related GenBank genome sequence entries. However, there are no reports available on context dependent miRNA expression and their targets in pigeonpea. Therefore, in the present study we addressed these questions computationally, using pigeonpea EST sequence information. We identified five novel pigeonpea miRNA precursors, their mature forms and targets. Interestingly, only one of these miRNAs (miR169i-3p) was identified earlier in draft genome sequence. We then validated expression of these miRNAs, experimentally. It was also observed that these miRNAs show differential expression patterns in response to Fusarium inoculation indicating their biotic stress responsive nature. Overall these results will help towards better understanding the regulatory network of defense during pigeonpea -pathogen interactions and role of miRNAs in the process.
Journal of Molecular Graphics & Modelling | 2017
Sagar H. Barage; Abhijeet Kulkarni; Jayanta K. Pal; Manali Joshi
The RNA-dependent protein kinase (PKR), an eIF2α kinase plays an important role in anti-viral response, apoptosis and cell survival. It is also implicated to play a role in several cancers, metabolic and neurodegenerative disorders. A few ATP competitive inhibitors of the PKR have been reported in the literature with promising results in vitro and in vivo. The aim of this study was to unravel the structural interactions between these inhibitors and the PKR kinase domain using molecular simulations and docking. Our study reveals that the reported inhibitors bind in the adenine pocket and form hydrogen bonds with the hinge region and vdW interactions with non-polar residues in the binding site. The most potent inhibitor has several favorable interactions with the binding site and induces the P-loop to fold inward, creating a significant hydrophobic enclosure for itself. The computed binding free energies of these inhibitors are in accord with experimental data (IC50). Strategies to design potent and selective PKR inhibitors are discussed to overcome the reported promiscuity.
Gene | 2016
Abhijeet Kulkarni; Smriti P.K. Mittal
The new world hookworm, Necator americanus is a soil-transmitted nematode responsible for Necatoriasis (a type of helminthiasis) in hosts such as humans, dogs, and cats. N. americanus genome and transcriptome has been sequenced and a draft assembly analysis has been published highlighting protein coding genes and possible drug target proteins. Hookworm microRNA identification, annotations and their public release is yet to be attempted. The same is evident from lack of hookworm miRNA information in related popular public nucleotide sequence repositories such as miRBase, GenBank, WormBase etc. Therefore, in the present study we addressed these issues using EST and assembled transcript sequence information of hookworm. Using computational approaches, we identified three miRNAs precursor sequences and their mature forms. We also identified their potential targets from hookworm ESTs and transcripts, and from human transcriptome. Overall, the results indicate presence of nematode specific miRNA homologs in N. americanus and shades light on their putative targets in worm itself and the human host.
Journal of Biomolecular Structure & Dynamics | 2018
Sourabh Palrecha; Dushant Lakade; Abhijeet Kulkarni; Jayanta K. Pal; Manali Joshi
The Heme-Regulated Inhibitor (HRI) kinase regulates globin synthesis in a heme-dependent manner in reticulocytes and erythroid cells in bone marrow. Inhibitors of HRI have been proposed to lead to an increased amount of haemoglobin, benefitting anaemia patients. A series of indeno[1,2-c]pyrazoles were discovered to be the first known in vitro inhibitors of HRI. However, the structural mechanism of inhibition is yet to be understood. The aim of this study was to unravel the binding mechanism of these inhibitors using molecular dynamic simulations and docking. The docking scores were observed to correlate well with experimentally determined pIC50 values. The inhibitors were observed to bind in the ATP-binding site forming hydrogen bonds with the hinge region and van der Waals interactions with non-polar residues in the binding site. Further, quantitative structure–activity relationship (QSAR) studies were performed to correlate the structural features of the inhibitors with their biological activity. The developed QSAR models were found to be statistically significant in terms of internal and external predictabilities. The presence of chlorine atoms and the hydroxymethyl groups were found to correlate with higher activity. The identified binding modes and the descriptors can support future rational identification of more potent and selective small molecule inhibitors for this kinase which are of therapeutic importance in the context of various human pathological disorders.
Scientific Reports | 2016
Jinumary Mathai; Smriti P.K. Mittal; Aftab Alam; Payal Ranade; Devraj Mogare; Sonal Patel; Smita Saxena; Suvankar Ghorai; Abhijeet Kulkarni; Samit Chattopadhyay
Chromatin architecture and dynamics are regulated by various histone and non-histone proteins. The matrix attachment region binding proteins (MARBPs) play a central role in chromatin organization and function through numerous regulatory proteins. In the present study, we demonstrate that nuclear matrix protein SMAR1 orchestrates global gene regulation as determined by massively parallel ChIP-sequencing. The study revealed that SMAR1 binds to T(C/G) repeat and targets genes involved in diverse biological pathways. We observe that SMAR1 binds and targets distinctly different genes based on the availability of p53. Our data suggest that SMAR1 binds and regulates one of the imperative microRNA clusters in cancer and metastasis, miR-371-373. It negatively regulates miR-371-373 transcription as confirmed by SMAR1 overexpression and knockdown studies. Further, deletion studies indicate that a ~200 bp region in the miR-371-373 promoter is necessary for SMAR1 binding and transcriptional repression. Recruitment of HDAC1/mSin3A complex by SMAR1, concomitant with alteration of histone marks results in downregulation of the miRNA cluster. The regulation of miR-371-373 by SMAR1 inhibits breast cancer tumorigenesis and metastasis as determined by in vivo experiments. Overall, our study highlights the binding of SMAR1 to T(C/G) repeat and its role in cancer through miR-371-373.
Pesticide Biochemistry and Physiology | 2006
Shaila Salokhe; Angshuman Sarkar; Abhijeet Kulkarni; Samindranath Mukherjee; Jayanta K. Pal