Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Abhijit Ray is active.

Publication


Featured researches published by Abhijit Ray.


European Journal of Pharmaceutics and Biopharmaceutics | 2011

Geometry and Surface Characteristics of Gold Nanoparticles Influence their Biodistribution and Uptake by Macrophages

Arnida; Margit M. Janát-Amsbury; Abhijit Ray; C. M. Peterson; Hamidreza Ghandehari

Spherical and rod-shaped gold nanoparticles with surface poly(ethylene glycol) (PEG) chains were characterized for size, shape, charge, poly dispersity and surface plasmon resonance. The nanoparticles were injected intravenously to 6-8-week-old female nu/nu mice bearing orthotopic ovarian tumors, and their biodistribution in vital organs was compared. Gold nanorods were taken up to a lesser extent by the liver, had longer circulation time in the blood, and higher accumulation in the tumors, compared with their spherical counterparts. The cellular uptake of PEGylated gold nanoparticles by a murine macrophage-like cell line as a function of geometry was examined. Compared to nanospheres, PEGylated gold nanorods were taken up to a lesser extent by macrophages. These studies point to the importance of gold nanoparticle geometry and surface properties on transport across biological barriers.


ACS Nano | 2012

Influence of geometry, porosity, and surface characteristics of silica nanoparticles on acute toxicity: Their vasculature effect and tolerance threshold

Tian Yu; Khaled Greish; Lawrence D. McGill; Abhijit Ray; Hamidreza Ghandehari

Silica nanoparticles (SiO(2)) are widely used in biomedical applications such as drug delivery, cell tracking, and gene transfection. The capability to control the geometry, porosity, and surface characteristics of SiO(2) further provides new opportunities for their applications in nanomedicine. Concerns however remain about the potential toxic effects of SiO(2) upon exposure to biological systems. In the present study, the acute toxicity of SiO(2) of systematically varied geometry, porosity, and surface characteristics was evaluated in immune-competent mice when administered intravenously. Results suggest that in vivo toxicity of SiO(2) was mainly influenced by nanoparticle porosity and surface characteristics. The maximum tolerated dose (MTD) increased in the following order: mesoporous SiO(2) (aspect ratio 1, 2, 8) at 30-65 mg/kg < amine-modified mesoporous SiO(2) (aspect ratio 1, 2, 8) at 100-150 mg/kg < unmodified or amine-modified nonporous SiO(2) at 450 mg/kg. The adverse reactions above MTDs were primarily caused by the mechanical obstruction of SiO(2) in the vasculature that led to congestion in multiple vital organs and subsequent organ failure. It was revealed that hydrodynamic sizes of SiO(2) post-protein exposure had an important implication in relating SiO(2) physicochemical properties with their vasculature impact and resultant tolerance threshold, as the larger the hydrodynamic size in the presence of serum protein, the lower the MTD. This study sheds light on the rational design of SiO(2) to minimize in vivo toxicity and provides a critical guideline in selecting SiO(2) as the appropriate system for nanomedicine applications.


Nanotoxicology | 2012

Size and surface charge significantly influence the toxicity of silica and dendritic nanoparticles

Khaled Greish; Giridhar Thiagarajan; Heather Herd; Robert Price; Hillevi Bauer; Dallin Hubbard; Alexander J. Burckle; S. Sadekar; Tian Yu; Arnida Anwar; Abhijit Ray; Hamidreza Ghandehari

Abstract The influence of size, surface charge and surface functionality of poly(amido amine) dendrimers and silica nanoparticles (SNPs) on their toxicity was studied in immunocompetent mice. After systematic characterization of nanoparticles, they were administered to CD-1 (caesarean derived-1) mice to evaluate acute toxicity. A distinct trend in nanotoxicity based on surface charge and functional group was observed with dendrimers regardless of their size. Amine-terminated dendrimers were fatal at doses >10 mg/kg causing haematological complications such as disseminated intravascular coagulation-like manifestations whereas carboxyl- and hydroxyl-terminated dendrimers of similar sizes were tolerated at 50-fold higher doses. In contrast, larger SNPs were less tolerated than smaller SNPs irrespective of their surface functionality. These findings have important implications in the use of these nanoparticles for various biomedical applications.


Journal of Controlled Release | 2012

In vivo biodistribution and pharmacokinetics of silica nanoparticles as a function of geometry, porosity and surface characteristics.

Tian Yu; Dallin Hubbard; Abhijit Ray; Hamidreza Ghandehari

The in vivo biodistribution and pharmacokinetics of silica nanoparticles (SiO(2)) with systematically varied geometries, porosities, and surface characteristics were investigated in immune-competent CD-1 mice via the intravenous injection. The nanoparticles were taken up extensively by the liver and spleen. Mesoporous SiO(2) exhibited higher accumulation in the lung than nonporous SiO(2) of similar size. This accumulation was reduced by primary amine modification of the nanoparticles. High aspect ratio, amine-modified mesoporous nanorods showed enhanced lung accumulation compared to amine-modified mesoporous nanospheres. Accumulation of the nanoparticles was mainly caused by passive entrapment in the discontinuous openings in the endothelium of the liver and spleen or in the pulmonary capillaries, and was highly dependent on nanoparticle hydrodynamic size in circulation. The SiO(2) were likely internalized by the reticulo-endothelial system (RES) following physical sequestration in the liver and spleen. The nanoparticles that were transiently associated with the lung were re-distributed out of this organ without significant internalization. Pharmacokinetic analysis showed that all SiO(2) were rapidly cleared from systemic circulation. Amine-modified or nonporous nanoparticles possessed a higher volume of distribution at steady state than their pristine counterparts or mesoporous SiO(2). In all, surface characteristics and porosity played important roles in influencing SiO(2) biodistribution and pharmacokinetics. Increasing the aspect ratio of amine-modified mesoporous SiO(2) from 1 to 8 resulted in increased accumulation in the lung.


Journal of Controlled Release | 2009

Transepithelial transport of PEGylated anionic poly(amidoamine) dendrimers: Implications for oral drug delivery

Deborah Sweet; Rohit B. Kolhatkar; Abhijit Ray; Peter W. Swaan; Hamidreza Ghandehari

The purpose of this work was to assess the impact of PEGylation on transepithelial transport of anionic poly(amidoamine) dendrimers. Cytotoxicity, uptake and transport across Caco-2 cells of PEGylated G3.5 and G4.5 PAMAM dendrimers were studied. Methoxy polyethylene glycol (750 Da) was conjugated to carboxylic acid-terminated PAMAM dendrimers at feed ratios of 1, 2 and 4 PEG per dendrimer. Compared to the control, PEGylation of anionic dendrimers did not significantly alter cytotoxicity up to a concentration of 0.1 mM. PEGylation of G3.5 dendrimers significantly decreased cellular uptake and transepithelial transport while PEGylation of G4.5 dendrimers led to a significant increase in uptake, but also a significant decrease in transport. Dendrimer PEGylation reduced the opening of tight junctions as evidenced by confocal microscopy techniques. Modulation of the tight junctional complex correlated well with changes in PEGylated dendrimer transport and suggests that anionic dendrimers are transported primarily through the paracellular route. PEGylated dendrimers show promise in oral delivery applications where increased functionality for drug conjugation and release is desired.


Biomacromolecules | 2011

COMPARATIVE BIODISTRIBUTION OF PAMAM DENDRIMERS AND HPMA COPOLYMERS IN OVARIAN TUMOR-BEARING MICE

S. Sadekar; Abhijit Ray; Margit M. Janát-Amsbury; C. M. Peterson; Hamidreza Ghandehari

The biodistribution profile of a series of linear N-(2-hydroxylpropyl)methacrylamide (HPMA) copolymers was compared with that of branched poly(amido amine) dendrimers containing surface hydroxyl groups (PAMAM-OH) in orthotopic ovarian-tumor-bearing mice. Below an average molecular weight (MW) of 29 kDa, the HPMA copolymers were smaller than the PAMAM-OH dendrimers of comparable molecular weight. In addition to molecular weight, hydrodynamic size and polymer architecture affected the biodistribution of these constructs. Biodistribution studies were performed by dosing mice with (125)iodine-labeled polymers and collecting all major organ systems, carcass, and excreta at defined time points. Radiolabeled polymers were detected in organ systems by measuring gamma emission of the (125)iodine radiolabel. The hyperbranched PAMAM dendrimer, hydroxyl-terminated, generation 5 (G5.0-OH), was retained in the kidney over 1 week, whereas the linear HPMA copolymer of comparable molecular weight was excreted into the urine and did not show persistent renal accumulation. PAMAM dendrimer, hydroxyl-terminated, generation 6.0 (G6.0-OH), was taken up by the liver to a higher extent, whereas the HPMA copolymer of comparable molecular weight was observed to have a plasma exposure three times that of this dendrimer. Tumor accumulation and plasma exposure were correlated with the hydrodynamic sizes of the polymers. PAMAM dendrimer, hydroxyl-terminated, generation 7.0 (G7.0-OH), showed extended plasma circulation, enhanced tumor accumulation, and prolonged retention with the highest tumor/blood ratio for the polymers under study. Head-to-head comparative study of HPMA copolymers and PAMAM dendrimers can guide the rational design and development of carriers based on these systems for the delivery of bioactive and imaging agents.


Molecular Pharmaceutics | 2011

Comparison of active and passive targeting of docetaxel for prostate cancer therapy by HPMA copolymer-RGDfK conjugates.

Abhijit Ray; Nate Larson; Daniel B. Pike; Michele Grüner; Sachin Naik; Hillevi Bauer; Alexander Malugin; Khaled Greish; Hamidreza Ghandehari

N-(2-Hydroxypropyl)methacrylamide (HPMA) copolymer-docetaxel-RGDfK conjugate was synthesized, characterized, and evaluated in vitro and in vivo in comparison with untargeted low and high molecular weight HPMA copolymer-docetaxel conjugates. The targeted conjugate was designed to have a hydrodynamic diameter below renal threshold to allow elimination post treatment. All conjugates demonstrated the ability to inhibit the growth of DU145 and PC3 human prostate cancer cells and the HUVEC at low nanomolar concentrations. The targeted conjugate showed active binding to α(v)β(3) integrins in both HUVEC and DU145 cells, whereas the untargeted conjugate demonstrated no evidence of specific binding. Efficacy at two concentrations (20 mg/kg and 40 mg/kg) was evaluated in nu/nu mice bearing DU145 tumor xenografts treated with a single dose of conjugates and compared with controls. RGDfK targeted and high molecular weight nontargeted conjugates exhibited the highest antitumor efficacy as evaluated by tumor regression. These results demonstrate that α(v)β(3) integrin targeted polymeric conjugates with improved water solubility, reduced toxicity and ease of elimination post treatment in vivo are promising candidates for prostate cancer therapy.


International Journal of Pharmaceutics | 2011

Gold nanorod mediated plasmonic photothermal therapy: A tool to enhance macromolecular delivery

Adam J. Gormley; Khaled Greish; Abhijit Ray; Ryan Robinson; Joshua A. Gustafson; Hamidreza Ghandehari

Plasmonic photothermal therapy (PPTT) with gold nanostructures has been used to generate significant heat within tumors to ablate vasculature. Here we report the use of gold nanorod (GNR) mediated PPTT to induce moderate hyperthermia as a tool to enhance the delivery of macromolecules. GNRs were injected intravenously in a mouse sarcoma (S-180) tumor model. After 24h Evans blue dye (EBD) was injected and the right tumor was radiated with a laser diode for 10 min. EBD content in the right and left tumors were extracted in formamide, measured spectrophotometrically and expressed as a thermal enhancement ratio (TER). Enhanced delivery of EBD was observed (up to 1.8-fold) when tumor temperatures reached 43°C or 46°C. No statistical difference was observed between tumors at these two temperatures, though significant hemorrhage was observed in tumors and surrounding areas receiving the higher thermal dose (46°C). These results indicate that tumor directed PPTT may be used to induce moderate hyperthermia and therefore selectively increase the delivery of macromolecules with therapeutic anticancer drugs.


International Journal of Pharmaceutics | 2013

Poly(amido amine) dendrimers as absorption enhancers for oral delivery of camptothecin.

S. Sadekar; Giridhar Thiagarajan; K. Bartlett; Dallin Hubbard; Abhijit Ray; Lawrence D. McGill; Hamidreza Ghandehari

Oral delivery of camptothecin has a treatment advantage but is limited by low bioavailability and gastrointestinal toxicity. Poly(amido amine) or PAMAM dendrimers have shown promise as intestinal penetration enhancers, drug solubilizers and drug carriers for oral delivery in vitro and in situ. There have been very limited studies in vivo to evaluate PAMAM dendrimers for oral drug delivery. In this study, camptothecin (5 mg/kg) was formulated and co-delivered with cationic, amine-terminated PAMAM dendrimer generation 4.0 (G4.0) (100 and 300 mg/kg) and anionic, carboxylate-terminated PAMAM generation 3.5 (G3.5) (300 and 1000 mg/kg) in CD-1 mice. Camptothecin associated to a higher extent with G4.0 than G3.5 in the formulation, attributed to an electrostatic interaction on the surface of G4.0. Both PAMAM G4.0 and G3.5 increased camptothecin solubilization in simulated gastric fluid and caused a 2-3 fold increase in oral absorption of camptothecin when delivered at 2 h. PAMAM G4.0 and G3.5 did not increase mannitol transport suggesting that the oral absorption of camptothecin was not due to tight junction modulation. Histologic observations of the epithelial layer of small intestinal segments of the gastrointestinal tract (GIT) at 4 h post dosing supported no evidence of toxicity at the evaluated doses of PAMAM dendrimers. This study demonstrates that both cationic (G.4) and anionic (G3.5) PAMAM dendrimers were effective in enhancing the oral absorption of camptothecin. Results suggest that drug inclusion in PAMAM interior controlled solubilization in simulated gastric and intestinal fluids, and increased oral bioavailability.


Bioconjugate Chemistry | 2010

Carboxyl Terminated PAMAM-SN38 Conjugates: Synthesis, Characterization, and In vitro Evaluation

Nirmalkumar Vijayalakshmi; Abhijit Ray; Alexander Malugin; Hamidreza Ghandehari

In this work, carboxyl-terminated PAMAM G-3.5 was covalently attached to SN38 via glycine and β-alanine spacers. The conjugates were stable at pH 7.4 and moderately hydrolyzed in cell culture media and rat plasma. Similarly to SN38 but to a lesser extent, both conjugates inhibited proliferation of human colorectal cancer HCT-116 cells, arrested the cell cycle in the G(2)/M phase, and led to nuclear fragmentation. However, activity of the conjugate with glycine spacer (IC(50) = 129 nM) was higher compared to that of the β-alanine linked conjugate (IC(50) = 387 nM). These PAMAM-SN38 conjugates have the potential for targeted therapy of colorectal carcinoma.

Collaboration


Dive into the Abhijit Ray's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge