Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Abhimanyu Garg is active.

Publication


Featured researches published by Abhimanyu Garg.


The New England Journal of Medicine | 2000

Beneficial Effects of High Dietary Fiber Intake in Patients with Type 2 Diabetes Mellitus

Manisha Chandalia; Abhimanyu Garg; Dieter Lütjohann; Klaus von Bergmann; Scott M. Grundy; Linda J. Brinkley

BACKGROUND The effect of increasing the intake of dietary fiber on glycemic control in patients with type 2 diabetes mellitus is controversial. METHODS In a randomized, crossover study, we assigned 13 patients with type 2 diabetes mellitus to follow two diets, each for six weeks: a diet containing moderate amounts of fiber (total, 24 g; 8 g of soluble fiber and 16 g of insoluble fiber), as recommended by the American Diabetes Association (ADA), and a high-fiber diet (total, 50 g; 25 g of soluble fiber and 25 g of insoluble fiber), containing foods not fortified with fiber (unfortified foods). Both diets, prepared in a research kitchen, had the same macronutrient and energy content. We compared the effects of the two diets on glycemic control and plasma lipid concentrations. RESULTS Compliance with the diets was excellent. During the sixth week, the high-fiber diet, as compared with the the sixth week of the ADA diet, mean daily preprandial plasma glucose concentrations were 13 mg per deciliter [0.7 mmol per liter] lower (95 percent confidence interval, 1 to 24 mg per deciliter [0.1 to 1.3 mmol per liter]; P=0.04) and mean median difference, daily urinary glucose excretion 1.3 g (0.23; 95 percent confidence interval, 0.03 to 1.83 g; P= 0.008). The high-fiber diet also lowered the area under the curve for 24-hour plasma glucose and insulin concentrations, which were measured every two hours, by 10 percent (P=0.02) and 12 percent (P=0.05), respectively. The high-fiber diet reduced plasma total cholesterol concentrations by 6.7 percent (P=0.02), triglyceride concentrations by 10.2 percent (P=0.02), and very-low-density lipoprotein cholesterol concentrations by 12.5 percent (P=0.01). CONCLUSIONS A high intake of dietary fiber, particularly of the soluble type, above the level recommended by the ADA, improves glycemic control, decreases hyperinsulinemia, and lowers plasma lipid concentrations in patients with type 2 diabetes.


Journal of Clinical Investigation | 1995

Relationships of generalized and regional adiposity to insulin sensitivity in men.

Nicola Abate; Abhimanyu Garg; James Stray-Gundersen; Scott M. Grundy

The relative impacts of regional and generalized adiposity on insulin sensitivity have not been fully defined. Therefore, we investigated the relationship of insulin sensitivity (measured using hyperinsulinemic, euglycemic clamp technique with [3-3H]glucose turnover) to total body adiposity (determined by hydrodensitometry) and regional adiposity. The latter was assessed by determining subcutaneous abdominal, intraperitoneal, and retroperitoneal fat masses (using magnetic resonance imaging) and the sum of truncal and peripheral skinfold thicknesses. 39 healthy middle-aged men with a wide range of adiposity were studied. Overall, the intraperitoneal and retroperitoneal fat constituted only 11 and 7% of the total body fat. Glucose disposal rate (Rd) and residual hepatic glucose output (rHGO) values during the 40 mU/m2.min insulin infusion correlated significantly with total body fat (r = -0.61 and 0.50, respectively), subcutaneous abdominal fat (r = -0.62 and 0.50, respectively), sum of truncal skinfold thickness (r = -0.72 and 0.57, respectively), and intraperitoneal fat (r = -0.51 and 0.44, respectively) but not to retroperitoneal fat. After adjusting for total body fat, the Rd and rHGO values showed the highest correlation with the sum of truncal skinfold thickness (partial r = -0.40 and 0.33, respectively). We conclude that subcutaneous truncal fat plays a major role in obesity-related insulin resistance in men, whereas intraperitoneal fat and retroperitoneal fat have a lesser role.


American Journal of Physiology-endocrinology and Metabolism | 1999

Measurement of intracellular triglyceride stores by 1H spectroscopy: validation in vivo

Lidia S. Szczepaniak; Evelyn E. Babcock; Fritz Schick; Robert L. Dobbins; Abhimanyu Garg; Dennis K. Burns; J. Denis McGarry; Daniel T. Stein

We validate the use of 1H magnetic resonance spectroscopy (MRS) to quantitatively differentiate between adipocyte and intracellular triglyceride (TG) stores by monitoring the TG methylene proton signals at 1.6 and 1.4 ppm, respectively. In two animal models of intracellular TG accumulation, intrahepatic and intramyocellular TG accumulation was confirmed histologically. Consistent with the histological changes, the methylene signal intensity at 1.4 ppm increased in both liver and muscle, whereas the signal at 1.6 ppm was unchanged. In response to induced fat accumulation, the TG concentration in liver derived from 1H MRS increased from 0 to 44.9 ± 13.2 μmol/g, and this was matched by increases measured biochemically (2.1 ± 1.1 to 46.1 ± 10.9 μmol/g). Supportive evidence that the methylene signal at 1.6 ppm in muscle is derived from investing interfascial adipose tissue was the finding that, in four subjects with generalized lipodystrophy, a disease characterized by absence of interfacial fat, no signal was detected at 1.6 ppm; however, a strong signal was seen at 1.4 ppm. An identical methylene chemical shift at 1.4 ppm was obtained in human subjects with fatty liver where the fat is located exclusively within hepatocytes. In experimental animals, there was a close correlation between hepatic TG content measured in vivo by 1H MRS and chemically by liver biopsy [ R = 0.934; P < .0001; slope 0.98, confidence interval (CI) 0.70-1.17; y-intercept 0.26, CI -0.28 to 0.70]. When applied to human calf muscle, the coefficient of variation of the technique in measuring intramyocellular TG content was 11.8% in nonobese subjects and 7.9% in obese subjects and of extramyocellular (adipocyte) fat was 22.6 and 52.5%, respectively. This study demonstrates for the first time that noninvasive in vivo 1H MRS measurement of intracellular TG, including that within myocytes, is feasible at 1.5-T field strengths and is comparable in accuracy to biochemical measurement. In addition, in mixed tissue such as muscle, the method is clearly advantageous in differentiating between TG from contaminating adipose tissue compared with intramyocellular lipids.


Nature Genetics | 2002

AGPAT2 is mutated in congenital generalized lipodystrophy linked to chromosome 9q34.

Anil K. Agarwal; Elif Arioglu; Salome de Almeida; Nurullah Akkoc; Simeon I. Taylor; Anne M. Bowcock; Robert Barnes; Abhimanyu Garg

Congenital generalized lipodystrophy is an autosomal recessive disorder characterized by marked paucity of adipose tissue, extreme insulin resistance, hypertriglyceridemia, hepatic steatosis and early onset of diabetes. We report several different mutations of the gene (AGPAT2) encoding 1-acylglycerol-3-phosphate O-acyltransferase 2 in 20 affected individuals from 11 pedigrees of diverse ethnicities showing linkage to chromosome 9q34. The AGPAT2 enzyme catalyzes the acylation of lysophosphatidic acid to form phosphatidic acid, a key intermediate in the biosynthesis of triacylglycerol and glycerophospholipids. AGPAT2 mRNA is highly expressed in adipose tissue. We conclude that mutations in AGPAT2 may cause congenital generalized lipodystrophy by inhibiting triacylglycerol synthesis and storage in adipocytes.


The New England Journal of Medicine | 1988

Comparison of a high-carbohydrate diet with a high-monounsaturated-fat diet in patients with non-insulin-dependent diabetes mellitus.

Abhimanyu Garg; Andrea Bonanome; Scott M. Grundy; Zu-Jun Zhang; Roger H. Unger

We compared a high-carbohydrate diet with a high-fat diet (specifically, a diet high in monounsaturated fatty acids) for effects on glycemic control and plasma lipoproteins in 10 patients with non-insulin-dependent diabetes mellitus (NIDDM) receiving insulin therapy. The patients were randomly assigned to receive first one diet and then the other, each for 28 days, in a metabolic ward. In the high-carbohydrate diet, 25 percent of the energy was in the form of fat and 60 percent in the form of carbohydrates (47 percent of the total energy was in the form of complex carbohydrates); the high-monounsaturated-fat diet was 50 percent fat (33 percent of the total energy in the form of monounsaturated fatty acids) and 35 percent carbohydrates. The two diets had the same amounts of simple carbohydrates and fiber. As compared with the high-carbohydrate diet, the high-monounsaturated-fat diet resulted in lower mean plasma glucose levels and reduced insulin requirements, lower levels of plasma triglycerides and very-low-density lipoprotein cholesterol (lower by 25 and 35 percent, respectively; P less than 0.01), and higher levels of high-density lipoprotein (HDL) cholesterol (higher by 13 percent; P less than 0.005). Levels of total cholesterol and low-density lipoprotein (LDL) cholesterol did not differ significantly in patients on the two diets. These preliminary results suggest that partial replacement of complex carbohydrates with monounsaturated fatty acids in the diets of patients with NIDDM does not increase the level of LDL cholesterol and may improve glycemic control and the levels of plasma triglycerides and HDL cholesterol.


The Lancet | 2003

LMNA mutations in atypical Werner's syndrome

Lishan Chen; Lin Lee; Brian A. Kudlow; Heloísa G. dos Santos; Olav Sletvold; Yousef Shafeghati; Eleanor G. Botha; Abhimanyu Garg; Nancy B. Hanson; George M. Martin; I. Saira Mian; Brian K. Kennedy; Junko Oshima

BACKGROUND Werners syndrome is a progeroid syndrome caused by mutations at the WRN helicase locus. Some features of this disorder are also present in laminopathies caused by mutant LMNA encoding nuclear lamin A/C. Because of this similarity, we sequenced LMNA in individuals with atypical Werners syndrome (wild-type WRN). METHODS Of 129 index patients referred to our international registry for molecular diagnosis of Werners syndrome, 26 (20%) had wildtype WRN coding regions and were categorised as having atypical Werners syndrome on the basis of molecular criteria. We sequenced all exons of LMNA in these individuals. Mutations were confirmed at the mRNA level by RT-PCR sequencing. In one patient in whom an LMNA mutation was detected and fibroblasts were available, we established nuclear morphology and subnuclear localisation. FINDINGS In four (15%) of 26 patients with atypical Werners syndrome, we noted heterozygosity for novel missense mutations in LMNA, specifically A57P, R133L (in two people), and L140R. The mutations altered relatively conserved residues within lamin A/C. Fibroblasts from the patient with the L140R mutation had a substantially enhanced proportion of nuclei with altered morphology and mislocalised lamins. Individuals with atypical Werners syndrome with mutations in LMNA had a more severe phenotype than did those with the disorder due to mutant WRN. INTERPRETATION Our findings indicate that Werners syndrome is molecularly heterogeneous, and a subset of the disorder can be judged a laminopathy.


Proceedings of the National Academy of Sciences of the United States of America | 2007

The lipodystrophy protein seipin is found at endoplasmic reticulum lipid droplet junctions and is important for droplet morphology

Kimberly M. Szymanski; Derk D. Binns; René Bartz; Nick V. Grishin; Wei Ping Li; Anil K. Agarwal; Abhimanyu Garg; Richard G. W. Anderson; Joel M. Goodman

Lipodystrophy is a disorder characterized by a loss of adipose tissue often accompanied by severe hypertriglyceridemia, insulin resistance, diabetes, and fatty liver. It can be inherited or acquired. The most severe inherited form is Berardinelli-Seip Congenital Lipodystrophy Type 2, associated with mutations in the BSCL2 gene. BSCL2 encodes seipin, the function of which has been entirely unknown. We now report the identification of yeast BSCL2/seipin through a screen to detect genes important for lipid droplet morphology. The absence of yeast seipin results in irregular lipid droplets often clustered alongside proliferated endoplasmic reticulum (ER); giant lipid droplets are also seen. Many small irregular lipid droplets are also apparent in fibroblasts from a BSCL2 patient. Human seipin can functionally replace yeast seipin, but a missense mutation in human seipin that causes lipodystrophy, or corresponding mutations in the yeast gene, render them unable to complement. Yeast seipin is localized in the ER, where it forms puncta. Almost all lipid droplets appear to be on the ER, and seipin is found at these junctions. Therefore, we hypothesize that seipin is important for droplet maintenance and perhaps assembly. In addition to detecting seipin, the screen identified 58 other genes whose deletions cause aberrant lipid droplets, including 2 genes encoding proteins known to activate lipin, a lipodystrophy locus in mice, and 16 other genes that are involved in endosomal–lysosomal trafficking. The genes identified in our screen should be of value in understanding the pathway of lipid droplet biogenesis and maintenance and the cause of some lipodystrophies.


The American Journal of Clinical Nutrition | 1998

High-monounsaturated-fat diets for patients with diabetes mellitus: a meta-analysis.

Abhimanyu Garg

The most recent position statement on nutrition from the American Diabetes Association recommends an individualized approach to nutrition that is based on the nutritional assessment and desired outcomes of each patient and that takes into consideration patient preferences and control of hyperglycemia and dyslipidemia. To achieve these nutritional goals, either low-saturated-fat, high-carbohydrate diets or high-monounsaturated-fat diets can be advised. A meta-analysis of various studies comparing these two approaches to diet therapy in patients with type 2 diabetes revealed that high-monounsaturated-fat diets improve lipoprotein profiles as well as glycemic control. High-monounsaturated-fat diets reduce fasting plasma triacylglycerol and VLDL-cholesterol concentrations by 19% and 22%, respectively, and cause a modest increase in HDL-cholesterol concentrations without adversely affecting LDL-cholesterol concentrations. Furthermore, there is no evidence that high-monounsaturated-fat diets induce weight gain in patients with diabetes mellitus provided that energy intake is controlled. Therefore, a diet rich in cis-monounsaturated fat can be advantageous for both patients with type 1 or type 2 diabetes who are trying to maintain or lose weight.


The Journal of Clinical Endocrinology and Metabolism | 2011

Lipodystrophies: Genetic and Acquired Body Fat Disorders

Abhimanyu Garg

CONTEXT Lipodystrophies are heterogeneous, genetic or acquired disorders characterized by selective loss of body fat and predisposition to insulin resistance. The extent of fat loss determines the severity of associated metabolic complications such as diabetes mellitus, hypertriglyceridemia, and hepatic steatosis. EVIDENCE ACQUISITION AND SYNTHESIS Both original and review articles were found via PubMed search reporting on clinical features and management of various types of lipodystrophies and were integrated with the authors knowledge of the field. CONCLUSION The autosomal recessive congenital generalized lipodystrophy and autosomal dominant familial partial lipodystrophy (FPL) are the two most common types of genetic lipodystrophies. Mutations in AGPAT2, BSCL2, CAV1, and PTRF have been reported in congenital generalized lipodystrophy and in LMNA, PPARG, AKT2, and PLIN1 in FPL. CIDEC is the disease gene for autosomal recessive, FPL and LMNA and ZMPSTE24 for autosomal recessive, mandibuloacral dysplasia-associated lipodystrophy. Recently, an autosomal recessive autoinflammatory lipodystrophy syndrome was reported to be due to PSMB8 mutation. Molecular genetic bases of many rare forms of genetic lipodystrophies remain to be elucidated. The most prevalent subtype of acquired lipodystrophy currently occurs with prolonged duration of protease inhibitor-containing, highly-active antiretroviral therapy in HIV-infected patients. The acquired generalized and partial lipodystrophies are mainly autoimmune in origin and display complement abnormalities. Localized lipodystrophies occur due to drug or vaccine injections, pressure, panniculitis, and other unknown reasons. The current management includes cosmetic surgery and early identification and treatment of metabolic and other complications with diet, exercise, hypoglycemic drugs, and lipid-lowering agents.


Diabetes | 1996

Relationship of Generalized and Regional Adiposity to Insulin Sensitivity in Men With NIDDM

Nicola Abate; Abhimanyu Garg; James Stray-Gundersen; Beverley Adams-Huet; Scott M. Grundy

Abdominal obesity, particularly excess intraperitoneal fat, is considered to play a major role in causing insulin resistance and NIDDM. To determine if NIDDM patients accumulate excess intraperitoneal fat, and whether this contributes significantly to their insulin resistance, 31 men with mild NIDDM with a wide range of adiposity were compared with 39 nondiabetic, control subjects for insulin sensitivity (measured using euglycemic-hyperinsulinemic clamp technique with [3-3H]glucose turnover) and total and regional adiposity (assessed by hydrodensitometry and by measuring subcutaneous abdominal, intraperitoneal, and retroperitoneal fat masses using magnetic resonance imaging [MRI], and truncal and peripheral skinfold thicknesses using calipers). MRI analysis revealed that intraperitoneal fat was not increased in NIDDM patients compared with control subjects; in both groups it averaged 11% of total body fat. NIDDM patients, however, had increased truncal-to-peripheral skinfolds thickness ratios. In NIDDM patients, as in control subjects, amounts of truncal subcutaneous fat showed a stronger correlation with glucose disposal rate than intraperitoneal or retroperitoneal fat; however, NIDDM patients were more insulin resistant at every level of total or regional adiposity. Further, no particular influence of excess intraperitoneal fat on hepatic insulin sensitivity was noted. We conclude that NIDDM patients do not have excess intraperitoneal fat, but that their fat distribution favors more truncal and less peripheral subcutaneous fat. Moreover, for each level of total and regional adiposity, NIDDM patients have a heightened state of insulin resistance.

Collaboration


Dive into the Abhimanyu Garg's collaboration.

Top Co-Authors

Avatar

Anil K. Agarwal

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Scott M. Grundy

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Beverley Adams-Huet

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Meena Shah

Texas Christian University

View shared research outputs
Top Co-Authors

Avatar

Zahid Ahmad

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Nicola Abate

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Anoop Misra

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Claudia Quittner

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Nivedita Patni

University of Texas Southwestern Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge