Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Abhisek Ghosal is active.

Publication


Featured researches published by Abhisek Ghosal.


Infection and Immunity | 2008

Intestinal Adherence of Vibrio cholerae Involves a Coordinated Interaction between Colonization Factor GbpA and Mucin

Rudra Bhowmick; Abhisek Ghosal; Bhabatosh Das; Hemanta Koley; Dhira Rani Saha; Sandipan Ganguly; Ranjan K. Nandy; Rupak K. Bhadra; Nabendu Sekhar Chatterjee

ABSTRACT The chitin-binding protein GbpA of Vibrio cholerae has been recently described as a common adherence factor for chitin and intestinal surface. Using an isogenic in-frame gbpA deletion mutant, we first show that V. cholerae O1 El Tor interacts with mouse intestinal mucus quickly, using GbpA in a specific manner. The gbpA mutant strain showed a significant decrease in intestinal adherence, leading to less colonization and fluid accumulation in a mouse in vivo model. Purified recombinant GbpA (rGbpA) specifically bound to N-acetyl-d-glucosamine residues of intestinal mucin in a dose-dependent, saturable manner with a dissociation constant of 11.2 μM. Histopathology results from infected mouse intestine indicated that GbpA binding resulted in a time-dependent increase in mucus secretion. We found that rGbpA increased the production of intestinal secretory mucins (MUC2, MUC3, and MUC5AC) in HT-29 cells through upregulation of corresponding genes. The upregulation of MUC2 and MUC5AC genes was dependent on NF-κB nuclear translocation. Interestingly, mucin could also increase GbpA expression in V. cholerae in a dose-dependent manner. Thus, we propose that there is a coordinated interaction between GbpA and mucin to upregulate each other in a cooperative manner, leading to increased levels of expression of both of these interactive factors and ultimately allowing successful intestinal colonization and pathogenesis by V. cholerae.


Journal of Clinical Microbiology | 2007

PCR-Based Identification of Common Colonization Factor Antigens of Enterotoxigenic Escherichia coli

Abhisek Ghosal; Rudra Bhowmick; Ranjan K. Nandy; T. Ramamurthy; Nabendu Sekhar Chatterjee

ABSTRACT Colonization factor antigens (CFAs) of enterotoxigenic Escherichia coli (ETEC) have been classified into several groups based on their distinct antigenicity. We describe here a PCR-based method to detect common CFAs of ETEC, which were characterized using conventional serology. This PCR assay is simple and sensitive for the detection of expressed CFA genes.


Journal of Biological Chemistry | 2013

Identification and Functional Analysis of the Primary Pantothenate Transporter, PfPAT, of the Human Malaria Parasite Plasmodium falciparum

Yoann Augagneur; Lise Jaubert; Matthieu Schiavoni; Niseema Pachikara; Aprajita Garg; Sahar Usmani-Brown; Donna Wesolowski; Skye Zeller; Abhisek Ghosal; Emmanuel Cornillot; Hamid M. Said; Priti Kumar; Sidney Altman; Choukri Ben Mamoun

Background: Pantothenate transport is essential for Plasmodium development. The transporter that mediates entry of pantothenate is unknown. Results: PfPAT encodes the primary pantothenate transporter of P. falciparum. Conclusion: PfPAT plays an essential function in parasite development and thus is a valid target for antimalarial therapy. Significance: PfPAT is the first pantothenate transporter identified and characterized in protozoan parasites and a valid target for therapy. The human malaria parasite Plasmodium falciparum is absolutely dependent on the acquisition of host pantothenate for its development within human erythrocytes. Although the biochemical properties of this transport have been characterized, the molecular identity of the parasite-encoded pantothenate transporter remains unknown. Here we report the identification and functional characterization of the first protozoan pantothenate transporter, PfPAT, from P. falciparum. We show using cell biological, biochemical, and genetic analyses that this transporter is localized to the parasite plasma membrane and plays an essential role in parasite intraerythrocytic development. We have targeted PfPAT to the yeast plasma membrane and showed that the transporter complements the growth defect of the yeast fen2Δ pantothenate transporter-deficient mutant and mediates the entry of the fungicide drug, fenpropimorph. Our studies in P. falciparum revealed that fenpropimorph inhibits the intraerythrocytic development of both chloroquine- and pyrimethamine-resistant P. falciparum strains with potency equal or better than that of currently available pantothenate analogs. The essential function of PfPAT and its ability to deliver both pantothenate and fenpropimorph makes it an attractive target for the development and delivery of new classes of antimalarial drugs.


Journal of Applied Microbiology | 2007

Effect of environmental factors on expression and activity of chitinase genes of vibrios with special reference to Vibrio cholerae

Rudra Bhowmick; Abhisek Ghosal; Nabendu Sekhar Chatterjee

Aims:  The aim of this study was to investigate the distribution and inducibility of chitinase genes in vibrios and the effect of environmental factors on the expression level and activity of chitinase genes in Vibrio cholerae strains.


American Journal of Physiology-gastrointestinal and Liver Physiology | 2013

Conditional knockout of the Slc5a6 gene in mouse intestine impairs biotin absorption

Abhisek Ghosal; Nils W. G. Lambrecht; Sandeep B. Subramanya; Rubina Kapadia; Hamid M. Said

The Slc5a6 gene expresses a plasma membrane protein involved in the transport of the water-soluble vitamin biotin; the transporter is commonly referred to as the sodium-dependent multivitamin transporter (SMVT) because it also transports pantothenic acid and lipoic acid. The relative contribution of the SMVT system toward carrier-mediated biotin uptake in the native intestine in vivo has not been established. We used a Cre/lox technology to generate an intestine-specific (conditional) SMVT knockout (KO) mouse model to address this issue. The KO mice exhibited absence of expression of SMVT in the intestine compared with sex-matched littermates as well as the expected normal SMVT expression in other tissues. About two-thirds of the KO mice died prematurely between the age of 6 and 10 wk. Growth retardation, decreased bone density, decreased bone length, and decreased biotin status were observed in the KO mice. Microscopic analysis showed histological abnormalities in the small bowel (shortened villi, dysplasia) and cecum (chronic active inflammation, dysplasia) of the KO mice. In vivo (and in vitro) transport studies showed complete inhibition in carrier-mediated biotin uptake in the intestine of the KO mice compared with their control littermates. These studies provide the first in vivo confirmation in native intestine that SMVT is solely responsible for intestinal biotin uptake. These studies also provide evidence for a casual association between SMVT function and normal intestinal health.


Infection and Immunity | 2009

Characterization and Studies of the Cellular Interaction of Native Colonization Factor CS6 Purified from a Clinical Isolate of Enterotoxigenic Escherichia coli

Abhisek Ghosal; Rudra Bhowmick; Rajat Banerjee; Sandipan Ganguly; S. Yamasaki; T. Ramamurthy; Takashi Hamabata; Nabendu Sekhar Chatterjee

ABSTRACT CS6 is a widely expressed colonization factor of enterotoxigenic Escherichia coli (ETEC). To date, CS6 has not been well characterized in its native state. Here, we purified CS6 for the first time from an ETEC clinical isolate. Purified CS6 was composed of two structural subunits, CssA and CssB, which were present in equal amounts and tightly linked through noncovalent, detergent-stable association. The CssA subunit was poorly immunogenic, whereas CssB was highly immunogenic. Although the predicted molecular mass of CssA is 15 kDa, the purified CssA has an effective molecular mass of 18.5 kDa due to fatty acid modification. When purified CS6 was screened for its ability to bind with different extracellular matrix proteins, fibronectin (Fn) was found to interact with CS6 as well as CssA in a dose-dependent and saturable manner. This interaction was inhibited both by a synthetic peptide corresponding to the C-terminal hydrophilic, surface-exposed region of CssA (positions 112 to 126) and by the antibody derived against this region. Enzyme-linked immunosorbent assay results showed that CssA interacted with the 70-kDa N-terminal domain of Fn. The modifications on CssA probably do not play a role in Fn binding. Preincubation of INT 407 cells with CssA, but not CssB, inhibited ETEC binding to these cells. The results suggested that CS6-expressing ETEC binds to Fn of INT 407 cells through the C-terminal region of CssA. Purified CS6 was found to colocalize with Fn along the junctions of INT 407 cells. Based on the results obtained, we propose that CS6-expressing ETEC binds to the intestinal cells through Fn for colonization.


Journal of Medical Microbiology | 2010

Allelic variation in colonization factor CS6 of enterotoxigenic Escherichia coli isolated from patients with acute diarrhoea and controls

Subrata Sabui; Abhisek Ghosal; Sanjucta Dutta; Avishek Ghosh; T. Ramamurthy; James P. Nataro; Takashi Hamabata; Nabendu Sekhar Chatterjee

Colonization factor antigens (CFAs) are important virulence factors in enterotoxigenic Escherichia coli (ETEC). Using a multiplex PCR and RT-PCR, this study tested the presence of common colonization factor-encoding genes and their expression in 50 ETEC strains isolated from stool specimens. The samples were from patients (children) with acute diarrhoea (cases) admitted to the Infectious Disease Hospital (Kolkata, India) and from normal children (controls) under 5 years of age from the community. The results indicated that coli surface antigen 6 (CS6) was the most prevalent CFA (78 %) expressed by these ETEC strains. Sequence analysis of both of the CS6 structural genes, i.e. cssA and cssB, in different ETEC isolates revealed the presence of point mutations in a systematic fashion. Based on the analysis of these variations, it was found that CssA had three alleles and CssB had two. Based on the allelic variations, subtyping of CS6 into AIBI, AIIBII, AIIIBI, AIBII and AIIIBII is proposed. The point mutations in the different alleles were reflected in a partial alteration in the secondary structure of both subunits, as determined by computational analysis. The functional significance of these changes was confirmed with cellular binding studies in Caco-2 cells with representative ETEC isolates. CS6 with AI or AIII allelic subtypes showed a higher binding capacity than AII, whereas BI showed stronger binding than BII. The AII and BII alleles were mostly detected in controls rather than in cases. The antibody specificity of BI and BII also varied due to alteration of the amino acids. Thus, CS6 variants are formed as a result of different allelic combinations of CssA and CssB, and these changes at the functional level might be important in the development of an effective ETEC vaccine.


PLOS ONE | 2015

Molecular Mechanisms Mediating the Adaptive Regulation of Intestinal Riboflavin Uptake Process

Veedamali S. Subramanian; Abhisek Ghosal; Rubina Kapadia; Svetlana M. Nabokina; Hamid M. Said

The intestinal absorption process of vitamin B2 (riboflavin, RF) is carrier-mediated, and all three known human RF transporters, i.e., hRFVT-1, -2, and -3 (products of the SLC52A1, 2 & 3 genes, respectively) are expressed in the gut. We have previously shown that the intestinal RF uptake process is adaptively regulated by substrate level, but little is known about the molecular mechanism(s) involved. Using human intestinal epithelial NCM460 cells maintained under RF deficient and over-supplemented (OS) conditions, we now show that the induction in RF uptake in RF deficiency is associated with an increase in expression of the hRFVT-2 & -3 (but not hRFVT-1) at the protein and mRNA levels. Focusing on hRFVT-3, the predominant transporter in the intestine, we also observed an increase in the level of expression of its hnRNA and activity of its promoter in the RF deficiency state. An increase in the level of expression of the nuclear factor Sp1 (which is important for activity of the SLC52A3 promoter) was observed in RF deficiency, while mutating the Sp1/GC site in the SLC52A3 promoter drastically decreased the level of induction in SLC52A3 promoter activity in RF deficiency. We also observed specific epigenetic changes in the SLC52A3 promoter in RF deficiency. Finally, an increase in hRFVT-3 protein expression at the cell surface was observed in RF deficiency. Results of these investigations show, for the first time, that transcriptional and post-transcriptional mechanisms are involved in the adaptive regulation of intestinal RF uptake by the prevailing substrate level.


Biochimica et Biophysica Acta | 2011

Role of the putative N-glycosylation and PKC- phosphorylation sites of the human sodium-dependent multivitamin transporter (hSMVT) in function and regulation

Abhisek Ghosal; Veedamali S. Subramanian; Hamid M. Said

The sodium-dependent multivitamin transporter (SMVT) is a major biotin transporter in a variety of tissues including the small intestine. The human SMVT (hSMVT) polypeptide is predicted to have four N-glycosylation sites and two putative PKC phosphorylation sites but their role in the function and regulation of the protein is not known and was examined in this investigation. Our results showed that the hSMVT protein is glycosylated and that this glycosylation is important for its function. Studies utilizing site-directed mutagenesis revealed that the N-glycosylation sites at positions Asn(138) and Asn(489) are important for the function of hSMVT and that mutating these sites significantly reduces the V(max) of the biotin uptake process. Mutating the putative PKC phosphorylation site Thr(286) of hSMVT led to a significant decrease in the PMA-induced inhibition in biotin uptake. The latter effect was not mediated via changes in the level of expression of the hSMVT protein and mRNA or in its level of expression at the cell membrane. These findings demonstrate that the hSMVT protein is glycosylated, and that glycosylation is important for its function. Furthermore, the study shows a role for the putative PKC-phosphorylation site Thr(286) of hSMVT in the PKC-mediated regulation of biotin uptake.


American Journal of Physiology-gastrointestinal and Liver Physiology | 2013

Differentiation-dependent regulation of intestinal vitamin B2 uptake: studies utilizing human-derived intestinal epithelial Caco-2 cells and native rat intestine

Veedamali S. Subramanian; Abhisek Ghosal; Sandeep B. Subramanya; Christian Lytle; Hamid M. Said

Intestinal epithelial cells undergo differentiation as they move from the crypt to the villi, a process that is associated with up- and downregulation in expression of a variety of genes, including those involved in nutrient absorption. Whether the intestinal uptake process of vitamin B(2) [riboflavin (RF)] also undergoes differentiation-dependent regulation and the mechanism through which this occurs are not known. We used human-derived intestinal epithelial Caco-2 cells and native rat intestine as models to address these issues. Caco-2 cells showed a significantly higher carrier-mediated RF uptake in post- than preconfluent cells. This upregulation was associated with a significantly higher level of protein and mRNA expression of the RF transporters hRFVT-1 and hRFVT-3 in the post- than preconfluent cells; it was also accompanied with a significantly higher rate of transcription of the respective genes (SLC52A1 and SLC52A3), as indicated by the higher level of expression of heterogeneous nuclear RNA and higher promoter activity in post- than preconfluent cells. Studies with native rat intestine also showed a significantly higher RF uptake by epithelial cells of the villus tip than epithelial cells of the crypt; this again was accompanied by a significantly higher level of expression of the rat RFVT-1 and RFVT-3 at the protein, mRNA, and heterogeneous nuclear RNA levels. These findings show, for the first time, that the intestinal RF uptake process undergoes differentiation-dependent upregulation and suggest that this is mediated (at least in part) via transcriptional mechanisms.

Collaboration


Dive into the Abhisek Ghosal's collaboration.

Top Co-Authors

Avatar

Hamid M. Said

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rubina Kapadia

University of California

View shared research outputs
Top Co-Authors

Avatar

Subrata Sabui

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge