Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Abhishek Prasad is active.

Publication


Featured researches published by Abhishek Prasad.


Journal of Neural Engineering | 2012

Comprehensive characterization and failure modes of tungsten microwire arrays in chronic neural implants

Abhishek Prasad; Qing-Shan Xue; Viswanath Sankar; Toshikazu Nishida; Gerry Shaw; Wolfgang J. Streit; Justin C. Sanchez

For nearly 55 years, tungsten microwires have been widely used in neurophysiological experiments in animal models to chronically record neuronal activity. While tungsten microwires initially provide stable recordings, their inability to reliably record high-quality neural signals for tens of years has limited their efficacy for neuroprosthetic applications in humans. Comprehensive understanding of the mechanisms of electrode performance and failure is necessary for developing next generation neural interfaces for humans. In this study, we evaluated the abiotic (electrophysiology, impedance, electrode morphology) and biotic (microglial reactivity, blood-brain barrier disruption, biochemical markers of axonal injury) effects of 16-channel, 50 µm diameter, polyimide insulated tungsten microwires array for implant durations that ranged from acute to up to 9 months in 25 rats. Daily electrode impedance spectroscopy, electrophysiological recordings, blood and cerebrospinal fluid (CSF) withdrawals, and histopathological analysis were performed to study the time-varying effects of chronic electrode implantation. Structural changes at the electrode recording site were observed as early as within 2-3 h of electrode insertion. Abiotic analysis indicated the first 2-3 weeks following surgery was the most dynamic period in the chronic electrode lifetime as there were greater variations in the electrode impedance, functional electrode performance, and the structural changes occurring at the electrode recording tips. Electrode recording site deterioration continued for the long-term chronic animals as insulation damage occurred and recording surface became more recessed over time. In general, electrode impedance and functional performance had smaller daily variations combined with reduced electrode recording site changes during the chronic phase. Histopathological studies were focused largely on characterizing microglial cell responses to electrode implantation. We found that activated microglia were present near the electrode tracks in all non-acute animals studied, thus indicating presence of a neuroinflammatory response regardless of post-implantation survival times and electrode performance. Conversely, dystrophic microglia detectable as fragmented cells were found almost exclusively in acute animals surviving only few hours after implantation. While there was no consistent relationship between microglial cell responses and electrode performance, we noticed co-occurrence of high ferritin expression, intraparenchymal bleeding, and microglial degeneration suggesting presence of excessive oxidative stress via Fenton chemistry. Biochemical analysis indicated that these electrodes always caused a persistent release of axonal injury biomarkers even several months after implantation suggesting persistent tissue damage. Our study suggests that mechanisms of electrode failure are multi-factorial involving both abiotic and biotic parameters. Since these failure modes occur concurrently and cannot be isolated from one another, the lack of consistent relationship between electrode performance and microglial responses in our results suggest that one or more of the abiotic factors were equally responsible for degradation in electrode performance over long periods of time.


Journal of Neural Engineering | 2012

Quantifying long-term microelectrode array functionality using chronic in vivo impedance testing

Abhishek Prasad; Justin C. Sanchez

Long-term acquisition of high-quality neural recordings is a cornerstone of neuroprosthetic system design. Mitigating the experimental variability of chronically implanted arrays has been a formidable task because the sensor recording sites can be influenced by biotic and abiotic responses. Several studies have implicated changes in electrical interface impedance as a preliminary marker to infer electrode viability. Microelectrode impedance plays an important role in the monitoring of low amplitude and high-resolution extracellular neural signals. In this work, we seek to quantify long-term microelectrode array functionality and derive an impedance-based predictor for electrode functionality that correlates the recording site electrical properties with the functional neuronal recordings in vivo. High temporal resolution metrics of this type would allow one to assess, predict, and improve electrode performance in the future. In a large cohort of animals, we performed daily impedance measurements and neural signal recordings over long periods (up to 21 weeks) of time in rats using tungsten microwire arrays implanted into the somatosensory cortex. This study revealed that there was a time-varying trend in the modulation of impedance that was related to electrode performance. Single units were best detected from electrodes at time points when the electrode entered into the 40-150 KΩ impedance range. This impedance trend was modeled across the full cohort of animals to predict future electrode performance. The model was tested on data from all animals and was able to provide predictions of electrode performance chronically. Insight from this study can be combined with knowledge of electrode materials and histological analysis to provide a more comprehensive predictive model of electrode failure in the future.


Frontiers in Neuroengineering | 2014

Abiotic-biotic characterization of Pt/Ir microelectrode arrays in chronic implants

Abhishek Prasad; Qing-Shan Xue; Robert Dieme; Viswanath Sankar; Roxanne Mayrand; Toshikazu Nishida; Wolfgang J. Streit; Justin C. Sanchez

Pt/Ir electrodes have been extensively used in neurophysiology research in recent years as they provide a more inert recording surface as compared to tungsten or stainless steel. While floating microelectrode arrays (FMA) consisting of Pt/Ir electrodes are an option for neuroprosthetic applications, long-term in vivo functional performance characterization of these FMAs is lacking. In this study, we have performed comprehensive abiotic-biotic characterization of Pt/Ir arrays in 12 rats with implant periods ranging from 1 week up to 6 months. Each of the FMAs consisted of 16-channel, 1.5 mm long, and 75 μm diameter microwires with tapered tips that were implanted into the somatosensory cortex. Abiotic characterization included (1) pre-implant and post-explant scanning electron microscopy (SEM) to study recording site changes, insulation delamination and cracking, and (2) chronic in vivo electrode impedance spectroscopy. Biotic characterization included study of microglial responses using a panel of antibodies, such as Iba1, ED1, and anti-ferritin, the latter being indicative of blood-brain barrier (BBB) disruption. Significant structural variation was observed pre-implantation among the arrays in the form of irregular insulation, cracks in insulation/recording surface, and insulation delamination. We observed delamination and cracking of insulation in almost all electrodes post-implantation. These changes altered the electrochemical surface area of the electrodes and resulted in declining impedance over the long-term due to formation of electrical leakage pathways. In general, the decline in impedance corresponded with poor electrode functional performance, which was quantified via electrode yield. Our abiotic results suggest that manufacturing variability and insulation material as an important factor contributing to electrode failure. Biotic results show that electrode performance was not correlated with microglial activation (neuroinflammation) as we were able to observe poor performance in the absence of neuroinflammation, as well as good performance in the presence of neuroinflammation. One biotic change that correlated well with poor electrode performance was intraparenchymal bleeding, which was evident macroscopically in some rats and presented microscopically by intense ferritin immunoreactivity in microglia/macrophages. Thus, we currently consider intraparenchymal bleeding, suboptimal electrode fabrication, and insulation delamination as the major factors contributing toward electrode failure.


Frontiers in Neuroengineering | 2014

Electrode impedance analysis of chronic tungsten microwire neural implants: understanding abiotic vs. biotic contributions

Viswanath Sankar; Erin Patrick; Robert Dieme; Justin C. Sanchez; Abhishek Prasad; Toshikazu Nishida

Changes in biotic and abiotic factors can be reflected in the complex impedance spectrum of the microelectrodes chronically implanted into the neural tissue. The recording surface of the tungsten electrode in vivo undergoes abiotic changes due to recording site corrosion and insulation delamination as well as biotic changes due to tissue encapsulation as a result of the foreign body immune response. We reported earlier that large changes in electrode impedance measured at 1 kHz were correlated with poor electrode functional performance, quantified through electrophysiological recordings during the chronic lifetime of the electrode. There is a need to identity the factors that contribute to the chronic impedance variation. In this work, we use numerical simulation and regression to equivalent circuit models to evaluate both the abiotic and biotic contributions to the impedance response over chronic implant duration. COMSOL® simulation of abiotic electrode morphology changes provide a possible explanation for the decrease in the electrode impedance at long implant duration while biotic changes play an important role in the large increase in impedance observed initially.


IEEE Pulse | 2012

Electrode Failure: Tissue, Electrical, and Material Responses

Wolfgang J. Streit; Qing-Shan Xue; Abhishek Prasad; Viswanath Sankar; Eric P. Knott; Aubrey L. Dyer; John R. Reynolds; Toshikazu Nishida; Gerald P. Shaw; Justin C. Sanchez

The development of invasive, rehabilitative neuroprosthetics for humans requires reliable neural probes that are capable of recording large ensembles of neurons for a long period of time. Recent advances in the development of neuroprosthetics in animals and humans have shown that communication and control can be directly derived from the central nervous system (CNS) for restoring lost motor ability [1]. This proof of concept has opened the possibility of new therapies for the millions of individuals suffering from neurological disorders of the nervous system. The success of these therapies hinges on the ability to reliably access the relevant signals from the brain with high quality for the lifetime of the patient. As a result, research has focused on the cascade of events that follow chronic implantation of microelectrodes and temporal degradation in the signal and electrode quality: signal-to-noise ratio, noise floor, peak amplitude, and neuronal yield. Implanted microelectrodes have been reported to suffer from time-dependent degradation in signal quality due to unknown issues related to tissue interfaces.


Frontiers in Neuroscience | 2010

Characterization of neural activity recorded from the descending tracts of the rat spinal cord

Abhishek Prasad; Mesut Sahin

A multi-electrode array (MEA) was implanted in the dorsolateral funiculus of the cervical spinal cord to record descending information during behavior in freely moving rats. Neural signals were characterized in terms of frequency and information content. Frequency analysis revealed components both at the range of local field potentials and multi-unit activity. Coherence between channels decreased steadily with inter-contact distance and frequency suggesting greater spatial selectivity for multi-unit activity compared to local field potentials. Principal component analysis (PCA) extracted multiple channels of neural activity with patterns that correlated to the behavior, indicating multiple dimensionality of the signals. Two different behaviors involving the forelimbs, face cleaning and food reaching, generated neural signals through distinctly different combination of neural channels, which suggested that these two behaviors could readily be differentiated from recordings. This preliminary data demonstrated that descending spinal cord signals recorded with MEAs can be used to extract multiple channels of command control information and potentially be utilized as a means of communication in high level spinal cord injury subjects.


Journal of Neural Engineering | 2006

Extraction of motor activity from the cervical spinal cord of behaving rats

Abhishek Prasad; Mesut Sahin

Injury at the cervical region of the spinal cord results in the loss of the skeletal muscle control from below the shoulders and hence causes quadriplegia. The brain-computer interface technique is one way of generating a substitute for the lost command signals in these severely paralyzed individuals using the neural signals from the brain. In this study, we are investigating the feasibility of an alternative method where the volitional signals are extracted from the cervical spinal cord above the point of injury. A microelectrode array assembly was implanted chronically at the C5-C6 level of the spinal cord in rats. Neural recordings were made during the face cleaning behavior with forelimbs as this task involves cyclic forelimb movements and does not require any training. The correlation between the volitional motor signals and the elbow movements was studied. Linear regression technique was used to reconstruct the arm movement from the rectified-integrated version of the principal neural components. The results of this study demonstrate the feasibility of extracting the motor signals from the cervical spinal cord and using them for reconstruction of the elbow movements.


Frontiers in Neuroscience | 2014

A confidence metric for using neurobiological feedback in actor-critic reinforcement learning based brain-machine interfaces

Noeline W. Prins; Justin C. Sanchez; Abhishek Prasad

Brain-Machine Interfaces (BMIs) can be used to restore function in people living with paralysis. Current BMIs require extensive calibration that increase the set-up times and external inputs for decoder training that may be difficult to produce in paralyzed individuals. Both these factors have presented challenges in transitioning the technology from research environments to activities of daily living (ADL). For BMIs to be seamlessly used in ADL, these issues should be handled with minimal external input thus reducing the need for a technician/caregiver to calibrate the system. Reinforcement Learning (RL) based BMIs are a good tool to be used when there is no external training signal and can provide an adaptive modality to train BMI decoders. However, RL based BMIs are sensitive to the feedback provided to adapt the BMI. In actor-critic BMIs, this feedback is provided by the critic and the overall system performance is limited by the critic accuracy. In this work, we developed an adaptive BMI that could handle inaccuracies in the critic feedback in an effort to produce more accurate RL based BMIs. We developed a confidence measure, which indicated how appropriate the feedback is for updating the decoding parameters of the actor. The results show that with the new update formulation, the critic accuracy is no longer a limiting factor for the overall performance. We tested and validated the system onthree different data sets: synthetic data generated by an Izhikevich neural spiking model, synthetic data with a Gaussian noise distribution, and data collected from a non-human primate engaged in a reaching task. All results indicated that the system with the critic confidence built in always outperformed the system without the critic confidence. Results of this study suggest the potential application of the technique in developing an autonomous BMI that does not need an external signal for training or extensive calibration.


Journal of Neuroengineering and Rehabilitation | 2012

Can motor volition be extracted from the spinal cord

Abhishek Prasad; Mesut Sahin

BackgroundSpinal cord injury (SCI) results in the partial or complete loss of movement and sensation below the level of injury. In individuals with cervical level SCI, there is a great need for voluntary command generation for environmental control, self-mobility, or computer access to improve their independence and quality of life. Brain-computer interfacing is one way of generating these voluntary command signals. As an alternative, this study investigates the feasibility of utilizing descending signals in the dorsolateral spinal cord tracts above the point of injury as a means of generating volitional motor control signals.MethodsIn this work, adult male rats were implanted with a 15-channel microelectrode array (MEA) in the dorsolateral funiculus of the cervical spinal cord to record multi-unit activity from the descending pathways while the animals performed a reach-to-grasp task. Mean signal amplitudes and signal-to-noise ratios during the behavior was monitored and quantified for recording periods up to 3 months post-implant. One-way analysis of variance (ANOVA) and Tukey’s post-hoc analysis was used to investigate signal amplitude stability during the study period. Multiple linear regression was employed to reconstruct the forelimb kinematics, i.e. the hand position, elbow angle, and hand velocity from the spinal cord signals.ResultsThe percentage of electrodes with stable signal amplitudes (p-value < 0.05) were 50% in R1, 100% in R2, 72% in R3, and 85% in R4. Forelimb kinematics was reconstructed with correlations of R2 > 0.7 using tap-delayed principal components of the spinal cord signals.ConclusionsThis study demonstrated that chronic recordings up to 3-months can be made from the descending tracts of the rat spinal cord with relatively small changes in signal characteristics over time and that the forelimb kinematics can be reconstructed with the recorded signals. Multi-unit recording technique may prove to be a viable alternative to single neuron recording methods for reading the information encoded by neuronal populations in the spinal cord.


Biomaterials | 2018

Blood brain barrier (BBB)-disruption in intracortical silicon microelectrode implants

Cassie Bennett; Malaroviyam Samikkannu; Farrah Mohammed; W. Dalton Dietrich; Suhrud M. Rajguru; Abhishek Prasad

Chronically implanted microelectrodes in the neural tissue elicit inflammatory responses that are time varying and have been shown to depend on multiple factors. Among these factors, blood brain barrier (BBB)-disruption has been hypothesized as one of the dominant factors resulting in electrode failure. A series of events that includes BBB and cell-membrane disruption occurs during electrode implantation that triggers multiple biochemical cascades responsible for microglial and astroglial activation, hemorrhage, edema, and release of pro-inflammatory neurotoxic cytokines that causes neuronal degeneration and dysfunction. Typically, microwire arrays and silicon probes are inserted slowly into the neural tissue whereas the silicon Utah MEAs (UMEA) are inserted at a high speed using a pneumatic inserter. In this work, we report the sequelae of electrode-implant induced cortical injury at various acute time points in UMEAs implanted in the brain tissue by quantifying the expression profile for key genes mediating the inflammatory response and tight junction (TJ) and adherens junction (AJ) proteins that form the BBB and are critical to the functioning of the BBB. Our results indicated upregulation of most pro-inflammatory genes relative to naïve controls for all time points. Expression levels for the genes that form the TJ and AJ were downregulated suggestive of BBB-dysfunction. Moreover, there was no significant difference between stab and implant groups suggesting the effects of UMEA insertion-related trauma in the brain tissue. Our results provide an insight into the physiological events related to neuroinflammation and BBB-disruption occurring at acute time-points following insertion of UMEAs.

Collaboration


Dive into the Abhishek Prasad's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mesut Sahin

New Jersey Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge