Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Abidemi Paul Kappo is active.

Publication


Featured researches published by Abidemi Paul Kappo.


Pharmaceuticals | 2015

Reactive oxygen species, apoptosis, antimicrobial peptides and human inflammatory diseases.

Babatunji Emmanuel Oyinloye; Abiola Fatimah Adenowo; Abidemi Paul Kappo

Excessive free radical generation, especially reactive oxygen species (ROS) leading to oxidative stress in the biological system, has been implicated in the pathogenesis and pathological conditions associated with diverse human inflammatory diseases (HIDs). Although inflammation which is considered advantageous is a defensive mechanism in response to xenobiotics and foreign pathogen; as a result of cellular damage arising from oxidative stress, if uncontrolled, it may degenerate to chronic inflammation when the ROS levels exceed the antioxidant capacity. Therefore, in the normal resolution of inflammatory reactions, apoptosis is acknowledged to play a crucial role, while on the other hand, dysregulation in the induction of apoptosis by enhanced ROS production could also result in excessive apoptosis identified in the pathogenesis of HIDs. Apparently, a careful balance must be maintained in this complex environment. Antimicrobial peptides (AMPs) have been proposed in this review as an excellent candidate capable of playing prominent roles in maintaining this balance. Consequently, in novel drug design for the treatment and management of HIDs, AMPs are promising candidates owing to their size and multidimensional properties as well as their wide spectrum of activities and indications of reduced rate of resistance.


Molecules | 2017

Aspalathin Reverts Doxorubicin-Induced Cardiotoxicity through Increased Autophagy and Decreased Expression of p53/mTOR/p62 Signaling

Rabia Johnson; Samukelisiwe Shabalala; Johan Louw; Abidemi Paul Kappo; Christo John Frederick Muller

Doxorubicin (Dox) is an effective chemotherapeutic agent used in the treatment of various cancers. Its clinical use is often limited due to its potentially fatal cardiotoxic side effect. Increasing evidence indicates that tumour protein p53 (p53), adenosine monophosphate-activated protein kinase (AMPK), nucleoporin p62 (p62), and the mammalian target of rapamycin (mTOR) are critical mediators of Dox-induced apoptosis, and subsequent dysregulation of autophagy. Aspalathin, a polyphenolic dihydrochalcone C-glucoside has been shown to activate AMPK while decreasing the expression of p53. However, the role that aspalathin could play in the inhibition of Dox-induced cardiotoxicity through increased autophagy flux remained unexplored. H9c2 cardiomyocytes and Caov-3 ovarian cancer cells were cultured in Dulbecco’s Modified Eagle’s medium and treated with or without Dox for five days. Thereafter, cells exposed to 0.2 µM Dox were co-treated with either 20 µM Dexrazozane (Dexra) or 0.2 µM aspalathin (ASP) daily for 5 days. Results obtained showed that ASP mediates its cytoprotective effect in a p53-dependent manner, by increasing the Bcl-2/Bax ratio and decreasing apoptosis. The latter effect was diminished through ASP-induced activation of autophagy-related genes (Atgs) with an associated decrease in p62 through induction of AMPK and Fox01. Furthermore, we showed that ASP was able to potentiate this effect without decreasing the anti-cancer efficacy of Dox, as could be observed in Caov-3 ovarian cancer cells. Taken together, the data presented in this study provides a credible mechanism by which ASP co-treatment could protect the myocardium from Dox-induced cardiotoxicity.


Current Drug Targets | 2014

The promise of antimicrobial peptides for treatment of human schistosomiasis.

Babatunji Emmanuel Oyinloye; Fatimah Adenowo; Nomagugu Gxaba; Abidemi Paul Kappo

Schistosomiasis sometimes referred to as bilharzia ranks high among the common neglected human tropical diseases. Parasitic trematode flatworm belonging to the genus Schistosoma is responsible for this acute and chronic disease. Its prevalence is rapidly increasing in the tropical regions worldwide; however, its economic and global health impact is grossly underestimated. There are five recognized species of schistosome parasitizing humans but the common species causing the disease are S. haematobium, S. japonicum and S. mansoni. Over the years, praziquantel, due to its advantage over other drugs employed in the treatment of schistosomiasis especially because of its effectiveness against all schistosoma species has remained the drug of choice. Unfortunately, due to drug pressure, some reports of praziquantel resistance in the treatment of some strains of S. haematobium and S. mansoni have been documented in literature. This has necessitated the search for novel anti-schistosomal agents as alternatives to praziquantel treatment. Currently, antimicrobial peptides are gaining prominence as possible sources of novel drugs in the control and treatment of schistosomiasis. A major driving force for evaluating antimicrobial peptides is their general diverse therapeutic applications, basically due to their size and properties as well as their broad spectrum of activities. Therefore, antimicrobial peptides are attractive candidates with promising results that may overcome drug resistance problems in search for novel therapeutic agents for the control and treatment of schistosomiasis.


Molecules | 2017

Protective Effects of Parkia biglobosa Protein Isolate on Streptozotocin-Induced Hepatic Damage and Oxidative Stress in Diabetic Male Rats

Bolajoko Idiat Ogunyinka; Babatunji Emmanuel Oyinloye; Foluso O. Osunsanmi; Andrew R. Opoku; Abidemi Paul Kappo

This study sought to investigate the possible protective role of Parkia biglobosa seed protein isolate (PBPi) against streptozotocin-induced hepatic damage and oxidative stress in diabetic male rats. Prior to animal experiments, a HPLC fingerprint of PBPi was recorded. Diabetes was induced in rats by a single intraperitoneal injection of streptozotocin (STZ; 60 mg/kg body weight). Diabetic rats were orally treated daily with PBPi (200 or 400 mg/kg body weight) or insulin (5 U/kg, i.p.) for 28 days. The degree of protection was evaluated using biochemical parameters such as malondialdehyde (MDA) levels, serum transaminases (ALT and AST), total protein, total glutathione (Total GSH), glutathione-S-transferase (GST), superoxide dismutase (SOD), catalase (CAT), and interleukin-6 (IL-6) activities. Histology of liver sections was also performed. The HPLC fingerprint of PBPi revealed eleven distinct peaks; PBPi at tested doses significantly attenuates STZ-induced elevated levels of serum IL-6, ALT and AST; and hepatic TBARS levels. Hepatic antioxidants (Total GSH, GST, SOD, CAT) as well as total protein were markedly restored in a dose-dependent manner. Histopathological results strongly support the protective role of PBPi. These results suggest PBPi could confer protection by ameliorating hepatic damage and oxidative stress caused by STZ in animal model possibly via its anti-inflammatory and antioxidant properties.


Pharmaceuticals | 2017

Roles of Heat Shock Proteins in Apoptosis, Oxidative Stress, Human Inflammatory Diseases, and Cancer

Paul Ikwegbue; Priscilla Masamba; Babatunji Emmanuel Oyinloye; Abidemi Paul Kappo

Heat shock proteins (HSPs) play cytoprotective activities under pathological conditions through the initiation of protein folding, repair, refolding of misfolded peptides, and possible degradation of irreparable proteins. Excessive apoptosis, resulting from increased reactive oxygen species (ROS) cellular levels and subsequent amplified inflammatory reactions, is well known in the pathogenesis and progression of several human inflammatory diseases (HIDs) and cancer. Under normal physiological conditions, ROS levels and inflammatory reactions are kept in check for the cellular benefits of fighting off infectious agents through antioxidant mechanisms; however, this balance can be disrupted under pathological conditions, thus leading to oxidative stress and massive cellular destruction. Therefore, it becomes apparent that the interplay between oxidant-apoptosis-inflammation is critical in the dysfunction of the antioxidant system and, most importantly, in the progression of HIDs. Hence, there is a need to maintain careful balance between the oxidant-antioxidant inflammatory status in the human body. HSPs are known to modulate the effects of inflammation cascades leading to the endogenous generation of ROS and intrinsic apoptosis through inhibition of pro-inflammatory factors, thereby playing crucial roles in the pathogenesis of HIDs and cancer. We propose that careful induction of HSPs in HIDs and cancer, especially prior to inflammation, will provide good therapeutics in the management and treatment of HIDs and cancer.


Toxicology reports | 2018

HPLC-DAD fingerprinting analysis, antioxidant activities of Tithonia diversifolia (Hemsl.) A. Gray leaves and its inhibition of key enzymes linked to Alzheimer’s disease

Oluwafemi Adeleke Ojo; Adebola Busola Ojo; Basiru Olaitan Ajiboye; Oluranti Olaiya; Mary Abiola Okesola; Aline Augusti Boligon; Marli Matiko Anraku de Campos; Babatunji Emmanuel Oyinloye; Abidemi Paul Kappo

Graphical abstract


Vaccine | 2017

Structural Analysis and Epitope Prediction of MHC Class-1-Chain Related Protein-A for Cancer Vaccine Development

Tayo Adekiya; Raphael Aruleba; Sbonelo Khanyile; Priscilla Masamba; Babatunji Emmanuel Oyinloye; Abidemi Paul Kappo

Major histocompatibility complex class 1 chain-related gene sequence A is a polymorphic gene found at about 46.6 kb centromeric to HLA-B. It encodes a transmembrane protein, which is a non-classical human leukocyte antigen whose expression is normally induced by stress conditions like cancer and viral infections. The expression of MIC-A leads to the activation of NKG2D receptors of natural killer and T cells, leading to the generation of innate immune response that can easily eliminate/cleanse tumour cells and other cells that express the protein. Several bioinformatics and immunoinformatics tools were used to analyse the sequence and structure of the MIC-A protein. These tools were used in building and evaluating modelled structure of MIC-A, and to predict several antigenic determinant sites on the protein. The MIC-A protein structure generated an average antigenic propensity of 1.0289. Additionally, the hydrophilic regions on the surface of the MIC-A protein where antibodies can be attached were revealed. A total of fourteen antigenic epitopes were predicted, with six found in the transmembrane protein topology, and are predicted to play a role in the development of vaccines that can reactivate the functionalities of the MIC-A protein on the surface of cancer cells in order to elicit a desired immune response.


Food Science and Nutrition | 2017

Comparative study on proximate, functional, mineral, and antinutrient composition of fermented, defatted, and protein isolate ofParkia biglobosaseed

Bolajoko Idiat Ogunyinka; Babatunji Emmanuel Oyinloye; Foluso O. Osunsanmi; Abidemi Paul Kappo; Andrew R. Opoku

Abstract The use of plant‐derived foods in the prevention, treatment, and management of metabolic diseases especially diabetes has gained prominence; this has been associated with their physicochemical properties. This study was conducted to compare the proximate, functional, mineral, and antinutrient composition of the fermented seeds, the defatted seeds, and the protein isolate from Parkia biglobosa seeds. The results showed that the fermented, defatted, and protein isolate varied in composition within the parameters studied. The proximate analysis revealed that the protein isolate had the highest ash (6.0%) and protein (59.4%) as well as the lowest fat (5.7%) and moisture (5.1%) content when compared to the fermented and defatted samples. In like manner, the functional properties of the protein isolate were relatively better than those of the fermented and defatted samples, with oil absorption capacity of 4.2% and emulsion capacity of 82%. The magnesium and zinc content of the protein isolate were significantly higher when compared with the fermented and defatted samples, while a negligible amount of antinutrient was present in all the samples, with the protein isolate having the lowest quantity. The overall data suggest that the protein isolate had better proximate, mineral, functional, and antinutrient properties when compared to the fermented and defatted samples. Therefore, the synergistic effect of all these components present in the protein isolate from P. biglobosa seed in association with its low carbohydrate and high protein/ash contents could play a vital role in the management of diabetes and its associated complications.


International Journal of Molecular Sciences | 2018

Structural Studies of Predicted Ligand Binding Sites and Molecular Docking Analysis of Slc2a4 as a Therapeutic Target for the Treatment of Cancer

Raphael Aruleba; Tayo Adekiya; Babatunji Emmanuel Oyinloye; Abidemi Paul Kappo

Presently, many studies have focused on exploring in silico approaches in the identification and development of alternative therapy for the treatment and management of cancer. Solute carrier family-2-member-4-gene (Slc2a4) which encodes glucose transporter 4 protein (GLUT4), has been identified as a promising therapeutic target for cancer. Though Slc2a4 is known to play a major regulatory role in the pathophysiology of type 2 diabetes, emerging evidence suggests that successful pharmacological inhibition of this protein may lead to the development of a novel drug candidate for the treatment of cancer. In this study, Slc2a4 protein sequence was retrieved and analysed using in silico approaches, and we identified seven putative antimicrobial peptides (AMPs; RAB1-RAB7) as anti-cancer. The structures of the protein and AMPs were modelled using I-TASSER server, and the overall quality of the Slc2a4 model was validated using PROCHECK. Subsequently, the probable motifs and active site of the protein were forecasted. Also, the molecular interaction between the AMPs and Slc2a4 was ascertained using PatchDock. The result revealed that, all the AMPs are good Slc2a4 inhibitors with RAB1 having the highest binding affinity of 12,392 and binding energy of −39.13 kcal/mol. Hence, this study reveals that all the generated AMPs can serve as therapeutic drug in treating cancer by inhibiting Slc2a4 which is responsible for the production of energy for cancer cells during angiogenesis. This is the first report on AMPs as inhibitors of Slc2a4 for the treatment of cancer.


Antioxidants | 2018

Inhibitory Effects of Solvent-Partitioned Fractions of Two Nigerian Herbs (Spondias mombin Linn. and Mangifera indica L.) on α-Amylase and α-Glucosidase

Oluwafemi Adeleke Ojo; Adeola Afon; Adebola Busola Ojo; Basiru Olaitan Ajiboye; Babatunji Emmanuel Oyinloye; Abidemi Paul Kappo

Therapies directed towards controlling hyperglycemia, the hallmark of type-2 diabetes mellitus, go a long way in managing diabetes and its related complications. Reducing glucose level through the inhibition of the relevant carbohydrate hydrolyzing enzymes is one among many routes in the management of diabetes. This study investigates the in vitro enzyme inhibitory and antioxidant properties of solvent-partitioned fractions of Spondias mombin and Mangifera indica leaves; which are used extensively in the treatment of diabetic patients locally. The leaves of S. mombin and M. indica were extracted with methanol and fractionated to obtain n-hexane (HF), ethyl acetate (EAF), n-butanol (BF), and aqueous (AF) fractions successively. The α-amylase and α-glucosidase inhibitory activities of fractions of S. mombin and M. indica leaves were investigated while the antioxidant activity of each fraction was analyzed using iron chelating and ABTS (2,2’-azino-bis(3-ethylbenzothiazoline)-6-sulphonic acid) radical scavenging assay. Our findings indicated that the ethyl acetate fraction of M. indica leaves contained a considerably higher (p < 0.05) amount of total phenolic, flavonoids, metal ion, and ABTS radical scavenging activity than the ethyl acetate fractions of S. mombin. Furthermore, the ethyl acetate fraction of M. indica had a considerably higher (p < 0.05) inhibitory effect on α-glucosidase (IC50 = 25.11 ± 0.01 μg mL−1), and α-amylase (IC50 = 24.04 ± 0.12 μg mL−1) activities than the S. mombin fraction. Hence, the inhibitory activities of S. mombin and M. indica leaves suggest that they are a potential source of orally active antidiabetic agents and could be employed to formulate new plant-based pharmaceutical and nutraceutical drugs to improve human health.

Collaboration


Dive into the Abidemi Paul Kappo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Johan Louw

South African Medical Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge