Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Abigail H. Conrad is active.

Publication


Featured researches published by Abigail H. Conrad.


Journal of Biological Chemistry | 2011

Effects of ultraviolet-A and Riboflavin on the interaction of collagen and proteoglycans during corneal cross-linking

Yuntao Zhang; Abigail H. Conrad; Gary W. Conrad

Corneal cross-linking using riboflavin and ultraviolet-A (RFUVA) is a clinical treatment targeting the stroma in progressive keratoconus. The stroma contains keratocan, lumican, mimecan, and decorin, core proteins of major proteoglycans (PGs) that bind collagen fibrils, playing important roles in stromal transparency. Here, a model reaction system using purified, non-glycosylated PG core proteins in solution in vitro has been compared with reactions inside an intact cornea, ex vivo, revealing effects of RFUVA on interactions between PGs and collagen cross-linking. Irradiation with UVA and riboflavin cross-links collagen α and β chains into larger polymers. In addition, RFUVA cross-links PG core proteins, forming higher molecular weight polymers. When collagen type I is mixed with individual purified, non-glycosylated PG core proteins in solution in vitro and subjected to RFUVA, both keratocan and lumican strongly inhibit collagen cross-linking. However, mimecan and decorin do not inhibit but instead form cross-links with collagen, forming new high molecular weight polymers. In contrast, corneal glycosaminoglycans, keratan sulfate and chondroitin sulfate, in isolation from their core proteins, are not cross-linked by RFUVA and do not form cross-links with collagen. Significantly, when RFUVA is conducted on intact corneas ex vivo, both keratocan and lumican, in their natively glycosylated form, do form cross-links with collagen. Thus, RFUVA causes cross-linking of collagen molecules among themselves and PG core proteins among themselves, together with limited linkages between collagen and keratocan, lumican, mimecan, and decorin. RFUVA as a diagnostic tool reveals that keratocan and lumican core proteins interact with collagen very differently than do mimecan and decorin.


Biochimica et Biophysica Acta | 2001

Transcriptional activation of bovine mimecan by p53 through an intronic DNA-binding site

Elena S. Tasheva; Carl G. Maki; Abigail H. Conrad; Gary W. Conrad

Mimecan is a small leucine-rich proteoglycan that can occur as either keratan sulfate proteoglycan in the cornea or as glycoprotein in many connective tissues. As yet, there is no information on its transcriptional regulation. Recently we demonstrated the presence of eight mimecan mRNA transcripts generated by alternative transcription initiation, alternative polyadenylation, and differential splicing, all of which encode an identical protein. Here we report a conserved consensus p53-binding DNA sequence in the first intron of bovine and human mimecan genes and show that wild-type p53 binds to this sequence in vitro. Co-transfections of Saos-2, HeLa, NIH 3T3, and primary bovine corneal keratocytes with bovine mimecan promoter/luciferase reporter constructs in combination with p53 expression vectors activate the second mimecan promoter through the p53-binding sequence. In addition, we show absence of mimecan expression in different tumors and cancer cell lines, where p53 frequently is inactivated/mutated. Thus, this work provides novel information that links mimecan to the p53 network.


Investigative Ophthalmology & Visual Science | 2010

Proteomic Analysis of Potential Keratan Sulfate, Chondroitin Sulfate A, and Hyaluronic Acid Molecular Interactions

Abigail H. Conrad; Yuntao Zhang; Elena S. Tasheva; Gary W. Conrad

PURPOSE Corneal stroma extracellular matrix (ECM) glycosaminoglycans (GAGs) include keratan sulfate (KS), chondroitin sulfate A (CSA), and hyaluronic acid (HA). Embryonic corneal keratocytes and sensory nerve fibers grow and differentiate according to chemical cues they receive from the ECM. This study asked which of the proteins that may regulate keratocytes or corneal nerve growth cone immigration interact with corneal GAGs. METHODS Biotinylated KS (bKS), CSA (bCSA), and HA (bHA) were prepared and used in microarray protocols to assess their interactions with 8268 proteins and a custom microarray of 85 extracellular epitopes of nerve growth-related proteins. Surface plasmon resonance (SPR) was performed with bKS and SLIT2, and their ka, kd, and KD were determined. RESULTS Highly sulfated KS interacted with 217 microarray proteins, including 75 kinases, several membrane or secreted proteins, many cytoskeletal proteins, and many nerve function proteins. CSA interacted with 24 proteins, including 10 kinases and 2 cell surface proteins. HA interacted with 6 proteins, including several ECM-related structural proteins. Of 85 ECM nerve-related epitopes, KS bound 40 proteins, including SLIT, 2 ROBOs, 9 EPHs, 8 Ephrins (EFNs), 8 semaphorins (SEMAs), and 2 nerve growth factor receptors. CSA bound nine proteins, including ROBO2, 2 EPHs, 1 EFN, two SEMAs, and netrin 4. HA bound no ECM nerve-related epitopes. SPR confirmed that KS binds SLIT2 strongly. The KS core protein mimecan/osteoglycin bound 15 proteins. CONCLUSIONS Corneal stromal GAGs bind, and thus could alter the availability or conformation of, many proteins that may influence keratocyte and nerve growth cone behavior in the cornea.


Matrix Biology | 2003

The keratocan gene is expressed in both ocular and non-ocular tissues during early chick development.

Abigail H. Conrad; Gary W. Conrad

Extracellular matrix (ECM) keratan sulfate proteoglycans (KSPGs) are core proteins with sulfated polylactosamine side chains (KS). The KSPG core protein keratocan gene (Kera) is expressed almost exclusively in adult vertebrate cornea, but its embryonic expression is little known. Embryonic chick in situ hybridization reveals Kera mRNA expression in corneal endothelium from embryonic day (E) 4.5, Hamburger-Hamilton (HH) 25, in stromal keratocytes from E6.5, HH30, and in iris distal surface cells from E8, HH34. As highly sulfated, antibody I22-positive KS increases extracellularly from posterior to anterior across the stroma, nerves enter and populate only anterior stroma and epithelium. RT-PCR and in situ hybridization demonstrate that developmentally regulated Kera mRNA expression initiates in midbrain and dorsolateral mesenchyme at E1, HH7, then spreads caudally in hindbrain and cranial and trunk mesenchyme flanking the neural tube through E2, HH20. Cranial expression extends ventrally through the developing head, and concentrates in mesenchyme surrounding eye anterior regions and cranial ganglia, and in subepidermal pharyngeal arch mesenchyme by E3.5, HH22. Kera expression in the trunk at E3.5, HH22 and E4.5, HH25, is strong in dorsolateral subepidermal, sclerotomal and nephrogenic mesenchymes, but absent in neural tube, dorsal root ganglia, nerve outgrowths, notochord, heart and gut. Early limb buds express Kera mRNA throughout their mesenchyme, then in restricted proximal and distal mesenchymes. I22-positive KS appears only in notochord in E3.5, HH22 and E4.5, HH25, embryos. Results suggest the hypothesis that keratocan, or keratocan with minimally sulfated KS chains, may play a role in structuring ECM for early embryonic cell and neuronal migrations.


Journal of Mass Spectrometry | 2008

On-target derivatization of keratan sulfate oligosaccharides with pyrenebutyric acid hydrazide for MALDI-TOF/TOF-MS.

Yuntao Zhang; Takeo Iwamoto; Gary A. Radke; Yutaka Kariya; Kiyoshi Suzuki; Abigail H. Conrad; John M. Tomich; Gary W. Conrad

In the present work, a rapid and novel method of on-target plate derivatization of keratan sulfate (KS) oligosaccharides for subsequent analysis by matrix-assisted laser desorption and ionization (MALDI) mass spectrometry is described. MALDI-(time-of-flight)-TOF spectra of labeled KS oligosaccharides revealed that significantly improved ionization can be accomplished through derivatization with pyrenebutyric acid hydrazide (PBH), and the most abundant peak in each spectrum corresponds to the singly charged molecular ion [M - H]- or [M + (n - 1)Na - nH]-, where n = the number of sulfates (n = 1, 2, 3...). The high-energy collision-induced dissociation (heCID) spectra of labeled KS oligosaccharides displayed fragments of compounds similar to those observed with laser-induced dissociation (LID) analysis, suggesting that both heCID and LID fragmentations can be used to analyze KS oligosaccharides. Moreover, fragmentation analysis of all labeled KS oligosaccharides was performed by MALDI-TOF/TOF-MS. With LID mode, sodium adducts showed fragmentation of glycosidic linkages with mainly Y/B/C ions, as well as various cross-ring cleavages providing exact information for the positions of sulfate groups along the KS oligosaccharide chains. This one-step on-target derivatization method makes MALDI-TOF/TOF-MS identification of KS fast, simple and highly throughput for trace amounts of biological samples.


Matrix Biology | 2000

Molecular cloning and relative tissue expression of keratocan and mimecan in embryonic quail cornea.

Lolita M. Corpuz; Jane R. Dunlevy; John R. Hassell; Abigail H. Conrad; Gary W. Conrad

We have cloned and sequenced the cDNAs for quail cornea keratan sulfate proteoglycan core proteins, keratocan and mimecan. The deduced quail keratocan protein contains a single conservative amino acid difference from the chick sequence, whereas quail mimecan protein contains a 58 amino acid-long avian-unique sequence that shares no homology with mammalian mimecan. Ribonuclease protection assay of Day 16 embryonic quail tissues reveals that keratocan and lumican are expressed at highest levels in cornea, whereas mimecan mRNA is expressed at a much lower level. Keratocan is expressed only in quail cornea, whereas mimecan is expressed in many different tissues as four transcripts of different sizes. Both lumican and mimecan are expressed at lowest levels in brain, liver and sternum.


Investigative Ophthalmology & Visual Science | 2008

Thyroxine Increases the Rate but Does Not Alter the Pattern of Innervation during Embryonic Chick Corneal Development

Abigail H. Conrad; Jessica M. Strafuss; Maria D. Wittman; Sabrina Conway; Gary W. Conrad

PURPOSE Embryonic chick corneal nerves reach limbal mesenchyme by embryonic day (E)5, encircle the cornea in several days, then defasciculate into the stroma simultaneously from all sides, while extracellular keratan sulfate proteoglycan (KSPG) accumulates from posterior to anterior stroma. Precocious thyroxine (T4)-induced increases in corneal thinning/transparency are blocked by 2-thiouracil (2-TU) inhibition of T3 synthesis. The hypothesis for this study was that precocious T4 exposure increases corneal innervation similarly. METHODS E8 embryos received T4, 2-TU, T4+2-TU, or buffer; corneas were harvested on E12. Corneal nerves were stained with neuronal beta-tubulin-specific TuJ1 antibody or chick nerve-specific CN antibody. Corneal thickness was determined from cryostat sections, and mRNA expression was measured by real-time PCR. RESULTS Nerves avoided the cornea until E9, then entered the anterior stroma, extended toward and reached the cornea center by E14, and never invaded posterior stroma. E7 to E18 corneal expressions of nerve growth factor and neurotrophin-3 genes were unchanged; receptor gene expressions rose. E7 to E12 semaphorin 3A and 3F and ephrin A2 and A5 expressions did not change significantly; semaphorin and ephrin/eph expressions increased from E9 to E18. E8 T4 administration increased nerve extension by E11, but did not alter circumferential penetration, anterior-only penetration, or neurotrophin expressions. 2-TU prevented T4-induced precocious corneal thinning, but augmented T4 nerve stimulation. CONCLUSIONS No changes in corneal neurotrophin or nerve pathfinding gene expressions accompany corneal transition to nerve growth cone permissiveness. T4 increases corneal nerve penetration rates by a non-T3-dependent mechanism. Results are consistent with possible roles for corneal KSPGs in regulating corneal nerve growth.


Investigative Ophthalmology & Visual Science | 2009

Embryonic corneal Schwann cells express some Schwann cell marker mRNAs, but no mature Schwann cell marker proteins.

Abigail H. Conrad; Michael Albrecht; Maya Pettit-Scott; Gary W. Conrad

PURPOSE Embryonic chick nerves encircle the cornea in pericorneal tissue until embryonic day (E)9, then penetrate the anterior corneal stroma, invade the epithelium, and branch over the corneal surface through E20. Adult corneal nerves, cut during transplantation or LASIK, never fully regenerate. Schwann cells (SCs) protect nerve fibers and augment nerve repair. This study evaluates SC differentiation in embryonic chick corneas. METHODS Fertile chicken eggs were incubated from E0 at 38 degrees C, 45% humidity. Dissected permeabilized corneas plus pericorneal tissue were immunostained for SC marker proteins. Other corneas were paraffin embedded, sectioned, and processed by in situ hybridization for corneal-, nerve-related, and SC marker gene expression. E9 to E20 corneas, dissected from pericorneal tissue, were assessed by real-time PCR (QPCR) for mRNA expression. RESULTS QPCR revealed unchanging low to moderate SLIT2/ROBO and NTN/UNC5 family, BACE1, and CADM3/CADM4 expressions, but high NEO1 expression. EGR2 and POU3F1 expressions never surpassed PAX3 expression. ITGNA6/ITGNB4 expressions increased 20-fold; ITGNB1 expression was high. SC marker S100 and MBP expressions increased; MAG, GFAP, and SCMP expressions were very low. Antibodies against the MPZ, MAG, S100, and SCMP proteins immunostained along pericorneal nerves, but not along corneal nerves. In the cornea, SLIT2 and SOX10 mRNAs were expressed in anterior stroma and epithelium, whereas PAX3, S100, MBP, and MPZL1 mRNAs were expressed only in corneal epithelium. CONCLUSIONS Embryonic chick corneas contain SCs, as defined by SOX10 and PAX3 transcription, which remain immature, at least in part because of stromal transcriptional and epithelial translational regulation of some SC marker gene expression.


Transactions of the Kansas Academy of Science | 1993

Preliminary Observations on the Effects of Vector-Averaged Gravity on the Embryonic and Larval Development of the Gastropod Mollusk, Ilyanassa obsoleta Stimpson

Gary W. Conrad; Andy P. Stephens; Abigail H. Conrad

Fertilized eggs of Ilyanassa obsoleta Stimpson were collected immediately after their deposition in egg capsules. Unopened egg capsules then were affixed to glass slides, and incubated either statically (controls) or on a clinostat (experimentals). After incubation for 9-14 days, hatching occurred sooner and in a higher percentage of clinostated capsules than in controls. Embryos that hatched while undergoing clinostat incubation were abnormal in morphology, whereas other embryos present in non-hatched capsules in the same tubes appeared normal, as did embryos in the control tubes. Although the results are compatible with a conclusion that vector-averaged gravity in the experimental tubes caused the altered development, some other aspects of how the incubations were done may have contributed to the differences between the control and experimental results.


Transactions of the Kansas Academy of Science | 1992

Microtubules as key cytoskeletal elements in cellular transport and shape changes: their expected responses to space environments.

Gary W. Conrad; Abigail H. Conrad

Application of reference standard reagents to alternatively depolymerize or stabilize microtubules in a cell that undergoes very regular cytoskeleton-dependent shape changes provides a model system in which some expected components of the environments of spacecraft and space can be tested on Earth for their effects on the cytoskeleton. The fertilized eggs of Ilyanassa obsoleta undergo polar lobe formation by repeated, dramatic, constriction and relaxation of a microfilamentous band localized in the cortical cytoplasm and activated by microtubules.

Collaboration


Dive into the Abigail H. Conrad's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yuntao Zhang

Kansas State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yutaka Kariya

Kyoto Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Kiyoshi Suzuki

Kyoto Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Andy P. Stephens

Mount Desert Island Biological Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge