Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Abigail L. Person is active.

Publication


Featured researches published by Abigail L. Person.


Nature | 2011

Purkinje neuron synchrony elicits time-locked spiking in the cerebellar nuclei

Abigail L. Person; Indira M. Raman

An unusual feature of the cerebellar cortex is that its output neurons, Purkinje cells, release GABA (γ-aminobutyric acid). Their high intrinsic firing rates (50 Hz) and extensive convergence predict that their target neurons in the cerebellar nuclei would be largely inhibited unless Purkinje cells pause their spiking, yet Purkinje and nuclear neuron firing rates do not always vary inversely. One indication of how these synapses transmit information is that populations of Purkinje neurons synchronize their spikes during cerebellar behaviours. If nuclear neurons respond to Purkinje synchrony, they may encode signals from subsets of inhibitory inputs. Here we show in weanling and adult mice that nuclear neurons transmit the timing of synchronous Purkinje afferent spikes, owing to modest Purkinje-to-nuclear convergence ratios (∼40:1), fast inhibitory postsynaptic current kinetics (τdecay = 2.5 ms) and high intrinsic firing rates (∼90 Hz). In vitro, dynamically clamped asynchronous inhibitory postsynaptic potentials mimicking Purkinje afferents suppress nuclear cell spiking, whereas synchronous inhibitory postsynaptic potentials entrain nuclear cell spiking. With partial synchrony, nuclear neurons time-lock their spikes to the synchronous subpopulation of inputs, even when only 2 out of 40 afferents synchronize. In vivo, nuclear neurons reliably phase-lock to regular trains of molecular layer stimulation. Thus, cerebellar nuclear neurons can preferentially relay the spike timing of synchronized Purkinje cells to downstream premotor areas.


Neuron | 2005

Unitary IPSPs Drive Precise Thalamic Spiking in a Circuit Required for Learning

Abigail L. Person; David J. Perkel

Song learning in birds requires a basal ganglia-thalamo-pallial loop that contains a calyceal GABAergic synapse in the thalamus. Information processing within this circuit is critical for proper song development; however, it is unclear whether activation of the inhibitory output of the basal ganglia structure Area X can drive sustained activity in its thalamic target, the medial portion of the dorsolateral thalamic nucleus (DLM). We show that high-frequency, random activation of this GABAergic synapse can drive precisely timed firing in DLM neurons in brain slices in the absence of excitatory input. Complex IPSP trains, including spike trains recorded in vivo, drive spiking in slices with high reproducibility, even between animals. Using a simple model, we can predict much of DLMs response to natural stimulus trains. These data elucidate basic rules by which thalamic relay neurons translate IPSPs into suprathreshold output and demonstrate extrathalamic GABAergic activation of thalamus.


The Journal of Comparative Neurology | 2008

Organization of the songbird basal ganglia, including area X

Abigail L. Person; Samuel D. Gale; Michael A. Farries; David J. Perkel

Area X is a songbird basal ganglia nucleus that is required for vocal learning. Both Area X and its immediate surround, the medial striatum (MSt), contain cells displaying either striatal or pallidal characteristics. We used pathway‐tracing techniques to compare directly the targets of Area X and MSt with those of the lateral striatum (LSt) and globus pallidus (GP). We found that the zebra finch LSt projects to the GP, substantia nigra pars reticulata (SNr) and pars compacta (SNc), but not the thalamus. The GP is reciprocally connected with the subthalamic nucleus (STN) and projects to the SNr and motor thalamus analog, the ventral intermediate area (VIA). In contrast to the LSt, Area X and surrounding MSt project to the ventral pallidum (VP) and dorsal thalamus via pallidal‐like neurons. A dorsal strip of the MSt contains spiny neurons that project to the VP. The MSt, but not Area X, projects to the ventral tegmental area (VTA) and SNc, but neither MSt nor Area X projects to the SNr. Largely distinct populations of SNc and VTA dopaminergic neurons innervate Area X and surrounding the MSt. Finally, we provide evidence consistent with an indirect pathway from the cerebellum to the basal ganglia, including Area X. Area X projections thus differ from those of the GP and LSt, but are similar to those of the MSt. These data clarify the relationships among different portions of the oscine basal ganglia as well as among the basal ganglia of birds and mammals. J. Comp. Neurol. 508:840–866, 2008.


The Journal of Comparative Neurology | 2008

A novel basal ganglia pathway forms a loop linking a vocal learning circuit with its dopaminergic input

Samuel D. Gale; Abigail L. Person; David J. Perkel

Dopamine has been implicated in mediating contextual modulation of motor behaviors and learning in many species. In songbirds, dopamine may act on the basal ganglia nucleus Area X to influence the neural activity that contributes to vocal learning and contextual changes in song variability. Neurons in midbrain dopamine centers, the substantia nigra pars compacta (SNc) and ventral tegmental area (VTA), densely innervate Area X and show singing‐related changes in firing rate. In addition, dopamine levels in Area X change during singing. It is unknown, however, how song‐related information could reach dopaminergic neurons. Here we report an anatomical pathway that could provide song‐related information to the SNc and VTA. By using injections of bidirectionally transported fluorescent tracers in adult male zebra finches, we show that Area X and other song control nuclei do not project directly to the SNc or VTA. Instead, we describe an indirect pathway from Area X to midbrain dopaminergic neurons via a connection in the ventral pallidum (VP). Specifically, Area X projects to the VP via axon collaterals of Area X output neurons that also project to the thalamus. Dual injections revealed that the area of VP receiving input from Area X projects to the SNc and VTA. Furthermore, VP terminals in the SNc and VTA overlap with cells that project back to Area X. A portion of the arcopallium also projects to the SNc and VTA and could carry auditory information. These data demonstrate an anatomical loop through which Area X activity could influence its dopaminergic input. J. Comp. Neurol. 508:824–839, 2008.


Frontiers in Neural Circuits | 2012

Synchrony and neural coding in cerebellar circuits

Abigail L. Person; Indira M. Raman

The cerebellum regulates complex movements and is also implicated in cognitive tasks, and cerebellar dysfunction is consequently associated not only with movement disorders, but also with conditions like autism and dyslexia. How information is encoded by specific cerebellar firing patterns remains debated, however. A central question is how the cerebellar cortex transmits its integrated output to the cerebellar nuclei via GABAergic synapses from Purkinje neurons. Possible answers come from accumulating evidence that subsets of Purkinje cells synchronize their firing during behaviors that require the cerebellum. Consistent with models predicting that coherent activity of inhibitory networks has the capacity to dictate firing patterns of target neurons, recent experimental work supports the idea that inhibitory synchrony may regulate the response of cerebellar nuclear cells to Purkinje inputs, owing to the interplay between unusually fast inhibitory synaptic responses and high rates of intrinsic activity. Data from multiple laboratories lead to a working hypothesis that synchronous inhibitory input from Purkinje cells can set the timing and rate of action potentials produced by cerebellar nuclear cells, thereby relaying information out of the cerebellum. If so, then changing spatiotemporal patterns of Purkinje activity would allow different subsets of inhibitory neurons to control cerebellar output at different times. Here we explore the evidence for and against the idea that a synchrony code defines, at least in part, the input–output function between the cerebellar cortex and nuclei. We consider the literature on the existence of simple spike synchrony, convergence of Purkinje neurons onto nuclear neurons, and intrinsic properties of nuclear neurons that contribute to responses to inhibition. Finally, we discuss factors that may disrupt or modulate a synchrony code and describe the potential contributions of inhibitory synchrony to other motor circuits.


The Journal of Neuroscience | 2007

Pallidal Neuron Activity Increases during Sensory Relay through Thalamus in a Songbird Circuit Essential for Learning

Abigail L. Person; David J. Perkel

Disinhibition of the thalamus remains the primary model of information transfer between the basal ganglia and the cortex. Yet in apparent conflict with this model, the globus pallidus, a GABAergic basal ganglia output structure, often exhibits marked increases in firing rate during movement. To investigate the translation of pallidal activity and its relay through the thalamus, we explored a basal ganglia–thalamic pathway essential for song learning in songbirds. We found that single units in the thalamic nucleus DLM of urethane-anesthetized adult male zebra finches responded selectively to playback of the birds own song, like neurons in its upstream and downstream nuclei. Because the pallidal input to these neurons forms giant calyx-like synapses, we were able to record extracellular signals from these presynaptic terminals as well. Pallidal units were distinctly excited by song playback, suggesting an increase in GABAergic transmission in the thalamus during sensory processing. However, this overall increased firing rate was phasic, punctuated by rapid decelerations in firing rate. In several cases, we were able to record presynaptic and postsynaptic units simultaneously. Correlating the presynaptic and postsynaptic activity, we found that disinhibition of thalamus may entail pallidal firing rate decelerations rather than simple long pauses in spontaneous activity, as has long been assumed.


Neuron | 2010

Deactivation of L-type Ca current by inhibition controls LTP at excitatory synapses in the cerebellar nuclei.

Abigail L. Person; Indira M. Raman

Long-term potentiation (LTP) of mossy fiber EPSCs in the cerebellar nuclei is controlled by synaptic inhibition from Purkinje neurons. EPSCs are potentiated by a sequence of excitation, inhibition, and disinhibition, raising the question of how these stimuli interact to induce plasticity. Here, we find that synaptic excitation, inhibition, and disinhibition couple to different calcium-dependent signaling pathways. In LTP induction protocols, constitutively active calcineurin can replace synaptic excitation, and constitutively active alpha-CaMKII can replace calcium influx associated with resumption of spiking upon disinhibition. Additionally, nimodipine can replace hyperpolarization, indicating that inhibition of firing decreases Ca influx through L-type Ca channels, providing a necessary signal for LTP. Together, these data suggest that potentiation develops after a calcineurin priming signal combines with an alpha-CaMKII triggering signal if and only if L-type Ca current is reduced. Thus, hyperpolarization induced by synaptic inhibition actively controls excitatory synaptic plasticity in the cerebellar nuclei.


The Journal of Neuroscience | 2009

Millisecond timescale disinhibition mediates fast information transmission through an avian basal ganglia loop

Arthur Leblois; Ágnes L. Bodor; Abigail L. Person; David J. Perkel

Avian song learning shares striking similarities with human speech acquisition and requires a basal ganglia (BG)–thalamo-cortical circuit. Information processing and transmission speed in the BG is thought to be limited by synaptic architecture of two serial inhibitory connections. Propagation speed may be critical in the avian BG circuit given the temporally precise control of musculature during vocalization. We used electrical stimulation of the cortical inputs to the BG to study, with fine time resolution, the functional connectivity within this network. We found that neurons in thalamic and cortical nuclei that are not directly connected with the stimulated area can respond to the stimulation with extremely short latencies. Through pharmacological manipulations, we trace this property back to the BG and show that the cortical stimulation triggers fast disinhibition of the thalamic neurons. Surprisingly, feedforward inhibition mediated by striatal inhibitory neurons onto BG output neurons sometimes precedes the monosynaptic excitatory drive from cortical afferents. The fast feedforward inhibition lengthens a single interspike interval in BG output neurons by just a few milliseconds. This short delay is sufficient to drive a strong, brief increase in firing probability in the target thalamic neurons, evoking short-latency responses. By blocking glutamate receptors in vivo, we show that thalamic responses do not appear to rely on excitatory drive, and we show in a theoretical model that they could be mediated by postinhibitory rebound properties. Such fast signaling through disinhibition and rebound may be a crucial specialization for learning of rapid and temporally precise motor acts such as vocal communication.


The Journal of Neuroscience | 2013

The neuronal code(s) of the cerebellum

Detlef H. Heck; Chris I. De Zeeuw; Dieter Jaeger; Kamran Khodakhah; Abigail L. Person

Understanding how neurons encode information in sequences of action potentials is of fundamental importance to neuroscience. The cerebellum is widely recognized for its involvement in the coordination of movements, which requires muscle activation patterns to be controlled with millisecond precision. Understanding how cerebellar neurons accomplish such high temporal precision is critical to understanding cerebellar function. Inhibitory Purkinje cells, the only output neurons of the cerebellar cortex, and their postsynaptic target neurons in the cerebellar nuclei, fire action potentials at high, sustained frequencies, suggesting spike rate modulation as a possible code. Yet, millisecond precise spatiotemporal spike activity patterns in Purkinje cells and inferior olivary neurons have also been observed. These results and ongoing studies suggest that the neuronal code used by cerebellar neurons may span a wide time scale from millisecond precision to slow rate modulations, likely depending on the behavioral context.


The Cerebellum | 2014

Cerebellar Loops: A Review of the Nucleocortical Pathway

Brenda D. Houck; Abigail L. Person

Feedback pathways are a common circuit motif in vertebrate brains. Reciprocal interconnectivity is seen between the cerebral cortex and thalamus as well as between basal ganglia structures, for example. Here, we review the literature on the nucleocortical pathway, a feedback pathway from the cerebellar nuclei to the cerebellar cortex, which has been studied anatomically but has remained somewhat obscure. This review covers the work examining this pathway on a number of levels, ranging from its existence in numerous species, its organization within cerebellar circuits, its cellular composition, and a discussion of its potential roles in motor control. Recent interest in cerebellar modular organization raises the profile of this neglected cerebellar pathway, and it is hoped that this review will consolidate knowledge gained over several decades of research into a useful format, spurring new investigations into this evolutionarily conserved pathway.

Collaboration


Dive into the Abigail L. Person's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Brenda D. Houck

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kamran Khodakhah

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Detlef H. Heck

University of Tennessee Health Science Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jesse I. Gilmer

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Matthew I Becker

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Samuel D. Gale

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Chris I. De Zeeuw

Erasmus University Rotterdam

View shared research outputs
Researchain Logo
Decentralizing Knowledge