Abigail M. Spear
Defence Science and Technology Laboratory
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Abigail M. Spear.
Trends in Microbiology | 2009
Abigail M. Spear; Nicholas J. Loman; Helen S. Atkins; Mark J. Pallen
The Toll/interleukin-1 receptor (TIR) domain plays a crucial role in the mammalian innate immune response. Recently, proteins containing TIR domains have been described in bacteria and it has been suggested that these bacterial proteins are involved in subversion of the vertebrate immune system. Here we describe the distribution of TIR-domain proteins among bacteria, fungi, archaea and viruses and evaluate the subversion hypothesis in the light of our findings. We suggest that most TIR domains in bacteria have nothing to do with subverting eukaryotic cells; instead, TIR domains function simply as general purpose protein-protein interaction domains put to diverse uses.
Medical Microbiology and Immunology | 2013
Rohini R. Rana; Minghao Zhang; Abigail M. Spear; Helen S. Atkins; Bernadette Byrne
The innate immune system provides the first line of host defence against invading pathogens. Key to upregulation of the innate immune response are Toll-like receptors (TLRs), which recognize pathogen-associated molecular patterns (PAMPs) and trigger a signaling pathway culminating in the production of inflammatory mediators. Central to this TLR signaling pathway are heterotypic protein–protein interactions mediated through Toll/interleukin-1 receptor (TIR) domains found in both the cytoplasmic regions of TLRs and adaptor proteins. Pathogenic bacteria have developed a range of ingenuous strategies to evade the host immune mechanisms. Recent work has identified a potentially novel evasion mechanism involving bacterial TIR domain proteins. Such domains have been identified in a wide range of pathogenic bacteria, and there is evidence to suggest that they interfere directly with the TLR signaling pathway and thus inhibit the activation of NF-κB. The individual TIR domains from the pathogenic bacteria Salmonella enterica serovar Enteritidis, Brucella sp, uropathogenic E. coli and Yersinia pestis have been analyzed in detail. The individual bacterial TIR domains from these pathogenic bacteria seem to differ in their modes of action and their roles in virulence. Here, we review the current state of knowledge on the possible roles and mechanisms of action of the bacterial TIR domains.
Microbiology | 2012
Abigail M. Spear; Rohini R. Rana; Dominic C. Jenner; Helen C. Flick-Smith; Petra C. F. Oyston; Peter J. Simpson; Stephen Matthews; Bernadette Byrne; Helen S. Atkins
The Toll/interleukin (IL)-1 receptor (TIR) domain is an essential component of eukaryotic innate immune signalling pathways. Interaction between TIR domains present in Toll-like receptors and associated adaptors initiates and propagates an immune signalling cascade. Proteins containing TIR domains have also been discovered in bacteria. Studies have subsequently shown that these proteins are able to modulate mammalian immune signalling pathways dependent on TIR interactions and that this may represent an evasion strategy for bacterial pathogens. Here, we investigate a TIR domain protein from the highly virulent bacterium Yersinia pestis, the causative agent of plague. When overexpressed in vitro this protein is able to downregulate IL-1β- and LPS-dependent signalling to NFκB and to interact with the TIR adaptor protein MyD88. This interaction is dependent on a single proline residue. However, a Y. pestis knockout mutant lacking the TIR domain protein was not attenuated in virulence in a mouse model of bubonic plague. Minor alterations in the host cytokine response to the mutant were indicated, suggesting a potential subtle role in pathogenesis. The Y. pestis mutant also showed increased auto-aggregation and reduced survival in high-salinity conditions, phenotypes which may contribute to pathogenesis or survival.
Injury-international Journal of The Care of The Injured | 2014
Hugo C. Guthrie; Kevin R. Martin; Christopher Taylor; Abigail M. Spear; Rachel Whiting; Sara Macildowie; Jonathan C. Clasper; Sarah Watts
Prevention of extremity war wound infection remains a clinical challenge. Staphylococcus aureus is the most common pathogen in delayed infection. We hypothesised that choice of wound dressings may affect bacterial burden over 7 days reflecting the current practice of delayed primary closure of wounds within this timeframe. A randomised controlled trial of 3 commercially available dressings (Inadine(®) (Johnson & Johnson, NJ, USA), Acticoat(®) (Smith & Nephew, Hull, UK), Activon Tulle (Advancis Medical, Nottingham, UK)) was conducted in a rabbit model of contaminated forelimb muscle injury. A positive control group treated with antibiotics was included. Groups were compared to a saline soaked gauze control. The primary outcome was a statistically significant reduction (p < 0.05) in tissue S. aureus at 7 days post-injury. Secondary outcome measurements included bacteraemias, observational data, whole blood determination, ELISA for plasma biomarkers, PCR array analysis of wound healing gene expression and muscle/lymph node histopathology. Antibiotic, Inadine and Acticoat groups had statistically significant lower bacterial counts (mean 7.13 [95% CI 0.00-96.31]×10(2); 1.66 [0.94-2.58]×10(5); 8.86 [0.00-53.35]×10(4)cfu/g, respectively) and Activon Tulle group had significantly higher counts (2.82 [0.98-5.61]×10(6)cfu/g) than saline soaked gauze control (7.58 [1.65-17.83]×10(5)cfu/g). There were no bacteraemias or significant differences in observational data or whole blood determination. There were no significant differences in muscle/loss or pathology and lymph node cross-sectional area or morphology. There were some significant differences between treatment groups in the plasma cytokines IL-4, TNFα and MCP-1 in comparison to the control. PCR array data demonstrated more general changes in gene expression in the muscle tissue from the Activon Tulle group than the Inadine or Acticoat dressings with a limited number of genes showing significantly altered expression compared to control. This study has demonstrated that both Acticoat(®) and Inadine(®) dressings can reduce the bacteria burden in a heavily contaminated soft tissue wound and so they may offer utility in the clinical setting particularly where surgical treatment is delayed.
Microbial Pathogenesis | 2009
Matthew W. Leckenby; Abigail M. Spear; Brendan N. Neeson; E. Diane Williamson; Rocky M. Cranenburgh; Helen S. Atkins
Live attenuated bacteria provide the potential to replace traditional needle-based vaccination with an orally administered vaccine. The heterologous antigen gene is usually transformed as a multi-copy plasmid into the bacterial cell, but plasmids in live bacterial vaccine strains are often unstable, so an alternative approach is to integrate the single-copy antigen gene into the bacterial chromosome. We report a comparison between the chromosomally integrated and the plasmid-borne Bacillus anthracis protective antigen gene in live Salmonella enterica serovar Typhimurium, using the Operator-Repressor Titration (ORT) system to ensure stable plasmid maintenance. These studies demonstrate that the stabilised plasmid approach of gene expression produced greater amounts of antigenic protein, which in turn resulted in higher antibody responses and levels of protection in mice.
Shock | 2015
Abigail M. Spear; Emma M. Davies; Christopher Taylor; Rachel Whiting; Sara Macildowie; Emrys Kirkman; Mark J. Midwinter; Sarah Watts
ABSTRACT Extremity injury is a significant burden to those injured in explosive incidents and local ischaemia can result in poor functionality in salvaged limbs. This study examined whether blast injury to a limb resulted in a change in endothelial phenotype leading to changes to the surrounding tissue. The hind limbs of terminally anaesthetized rabbits were subjected to one of four blast exposures (high, medium, low, or no blast). Blood samples were analyzed for circulating endothelial cells pre-injury and at 1, 6, and 11 h postinjury as well as analysis for endothelial activation pre-injury and at 1, 6, and 12 h postinjury. Post-mortem tissue (12 h post-injury) was analysed for both protein and mRNA expression and also for histopathology. The high blast group had significantly elevated levels of circulating endothelial cells 6 h postinjury. This group also had significantly elevated tissue mRNA expression of IL-6, E-selectin, TNF-&agr;, HIF-1, thrombomodulin, and PDGF. There was a significant correlation between blast dose and the degree of tissue pathology (hemorrhage, neutrophil infiltrate, and oedema) with the worst scores in the high blast group. This study has demonstrated that blast injury can activate the endothelium and in some cases cause damage that in turn leads to pathological changes in the surrounding tissue. For the casualty injured by an explosion the damaging effects of hemorrhage and shock could be exacerbated by blast injury and vice versa so that even low levels of blast become damaging, all of which could affect tissue functionality and long-term outcomes.
PLOS ONE | 2016
Emil Carlsson; Joanne E. Thwaite; Dominic C. Jenner; Abigail M. Spear; Helen C. Flick-Smith; Helen S. Atkins; Bernadette Byrne; J. Ding
Toll-like receptors (TLRs) recognise invading pathogens and mediate downstream immune signalling via Toll/IL-1 receptor (TIR) domains. TIR domain proteins (Tdps) have been identified in multiple pathogenic bacteria and have recently been implicated as negative regulators of host innate immune activation. A Tdp has been identified in Bacillus anthracis, the causative agent of anthrax. Here we present the first study of this protein, designated BaTdp. Recombinantly expressed and purified BaTdp TIR domain interacted with several human TIR domains, including that of the key TLR adaptor MyD88, although BaTdp expression in cultured HEK293 cells had no effect on TLR4- or TLR2- mediated immune activation. During expression in mammalian cells, BaTdp localised to microtubular networks and caused an increase in lipidated cytosolic microtubule-associated protein 1A/1B-light chain 3 (LC3), indicative of autophagosome formation. In vivo intra-nasal infection experiments in mice showed that a BaTdp knockout strain colonised host tissue faster with higher bacterial load within 4 days post-infection compared to the wild type B. anthracis. Taken together, these findings indicate that BaTdp does not play an immune suppressive role, but rather, its absence increases virulence. BaTdp present in wild type B. anthracis plausibly interact with the infected host cell, which undergoes autophagy in self-defence.
npj Regenerative Medicine | 2018
Abigail M. Spear; Graham Lawton; Robert M.T. Staruch; Rory Rickard
The recent prolonged conflicts in Iraq and Afghanistan saw the advancement of deployed trauma care to a point never before seen in war. The rapid translation of lessons from combat casualty care research, facilitated by an appetite for risk, contributed to year-on-year improvements in care of the injured. These paradigms, however, can only ever halt the progression of damage. Regenerative medicine approaches, in contrast, hold a truly disruptive potential to go beyond the cessation of damage from blast or ballistic trauma, to stimulate its reversal, and to do so from a very early point following injury. The internationally distributed and, in parts austere environments in which operational medical care is delivered provide an almost unique challenge to the development and translation of regenerative medicine technologies. In parallel, however, an inherent appetite for risk means that Defence will always be an early adopter. In focusing our operational priorities for regenerative medicine, the authors conducted a review of the current research landscape in the UK and abroad and sought wide clinical opinion. Our priorities are all applicable very far forward in the patient care pathway, and are focused on three broad and currently under-researched areas, namely: (a) blood, as an engineered tissue; (b) the mechanobiology of deep tissue loss and mechanobiological approaches to regeneration, and; (c) modification of the endogenous response. In focusing on these areas, we hope to engender the development of regenerative solutions for improved functional recovery from injuries sustained in conflict.
Microbial Pathogenesis | 2011
Rohini R. Rana; Peter J. Simpson; Minghao Zhang; Matthew Jennions; Chimaka Ukegbu; Abigail M. Spear; Yilmaz Alguel; Stephen Matthews; Helen S. Atkins; Bernadette Byrne
Journal of Bone and Joint Surgery-british Volume | 2013
Hc Guthrie; Kevin R. Martin; Christopher Taylor; Abigail M. Spear; Jc Clasper; Sarah Watts