Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Abigaïl Swillens is active.

Publication


Featured researches published by Abigaïl Swillens.


IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control | 2013

Simultaneous quantification of flow and tissue velocities based on multi-angle plane wave imaging

Ingvild Kinn Ekroll; Abigaïl Swillens; Patrick Segers; Torbjørn Dahl; Hans Torp; Lasse Lovstakken

A quantitative angle-independent 2-D modality for flow and tissue imaging based on multi-angle plane wave acquisition was evaluated. Simulations of realistic flow in a carotid artery bifurcation were used to assess the accuracy of the vector Doppler (VD) technique. Reduction in root mean square deviation from 27 cm/s to 6 cm/s and 7 cm/s to 2 cm/s was found for the lateral (vx) and axial (vz) velocity components, respectively, when the ensemble size was increased from 8 to 50. Simulations of a Couette flow phantom (vmax = 2.7 cm/s) gave promising results for imaging of slowly moving tissue, with root mean square deviation of 4.4 mm/s and 1.6 mm/s for the x- and z-components, respectively. A packet acquisition scheme providing both B-mode and vector Doppler RF data was implemented on a research scanner, and beamforming and further post-processing was done offline. In vivo results of healthy volunteers were in accordance with simulations and gave promising results for flow and tissue vector velocity imaging. The technique was also tested in patients with carotid artery disease. Using the high ensemble vector Doppler technique, blood flow through stenoses and secondary flow patterns were better visualized than in ordinary color Doppler. Additionally, the full velocity spectrum could be obtained retrospectively for arbitrary points in the image.


IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control | 2009

Ultrasound simulation of complex flow velocity fields based on computational fluid dynamics

Abigaïl Swillens; Lasse Lovstakken; Jan Kips; Hans Torp; Patrick Segers

In this work, a simulation environment for the development of flow-related ultrasound algorithms is presented. Ultrasound simulations of realistic Doppler signals require accurate modeling of blood flow. Instead of using analytically described flow behavior, complex blood movement can be derived from velocity fields obtained with computational fluid dynamics (CFD). By further modeling blood as a collection of point scatterers, resulting RF-signals can be efficiently retrieved using an existing ultrasound simulation model. The main aim of this paper is to elaborate on creating CFD-based phantoms for ultrasound simulations. The coupling of a computed flow field with an ultrasound model offers flexible control of flow and ultrasound imaging parameters, beneficial for improving and developing imaging algorithms. The proposed method was validated in a straight tube with a stationary parabolic velocity profile and further demonstrated by an eccentrically stenosis carotid bifurcation. The estimated flow velocities are in good agreement with the CFD reference, both for color flow imaging and pulsed-wave doppler simulations. The presented method can also be extended to include wall mechanics simulations in future work.


IEEE Transactions on Biomedical Engineering | 2008

Effect of an Abdominal Aortic Aneurysm on Wave Reflection in the Aorta

Abigaïl Swillens; Lieve Lanoye; J. De Backer; Nikos Stergiopulos; Pascal Verdonck; Frank Vermassen; Patrick Segers

Despite extensive attention to abdominal aortic aneurysm (AAA) in the biomedical engineering community, its effect on aortic hemodynamics and arterial wave reflection has not been addressed before. We used experimental and numerical methods, relying on a realistic AAA geometry constructed from patient computer tomography scans (CT-scans), to study this issue. Pressure and flow waves were measured and simulated before and after AAA repair, and wave reflections were analyzed using linear wave separation and wave intensity analysis. With AAA, pronounced reflections were present in the pressure and flow waveforms. The reflection coefficient measured experimentally in the upper aorta was negative with AAA (-0.10) versus 0.47 without AAA. Wave intensity analysis confirmed the presence of a backward expansion wave caused by sudden expansion of the aorta; this was absent without AAA. These results were confirmed using a 1-D numerical model. A parameter study using this model demonstrated that dominant factors are diameter and compliance of the aneurysm, with larger diameters and more compliant AAA generating more negative reflections. Finally, a preliminary noninvasive study in three patients before and after AAA repair demonstrated that AAA-repair increased the reflection coefficient. In conclusion, the presence of AAA significantly alters wave reflection and hemodynamics in the aorta, with apparently measurable effects in humans.


Cardiovascular Research | 2010

Impact of competitive flow on wall shear stress in coronary surgery: computational fluid dynamics of a LIMA–LAD model

Håvard Nordgaard; Abigaïl Swillens; Dag Nordhaug; Idar Kirkeby-Garstad; Denis Van Loo; Nicola Vitale; Patrick Segers; Rune Haaverstad; Lasse Lovstakken

AIMS Competitive flow from native coronary vessels is considered a major factor in the failure of coronary bypass grafts. However, the pathophysiological effects are not fully understood. Low and oscillatory wall shear stress (WSS) is known to induce endothelial dysfunction and vascular disease, like atherosclerosis and intimal hyperplasia. The aim was to investigate the impact of competitive flow on WSS in mammary artery bypass grafts. METHODS AND RESULTS Using computational fluid dynamics, WSS was calculated in a left internal mammary artery (LIMA) graft to the left anterior descending artery in a three-dimensional in vivo porcine coronary artery bypass graft model. The following conditions were investigated: high competitive flow (non-significant coronary lesion), partial competitive flow (significant coronary lesion), and no competitive flow (totally occluded coronary vessel). Time-averaged WSS of LIMA at high, partial, and no competitive flow were 0.3-0.6, 0.6-3.0, and 0.9-3.0 Pa, respectively. Further, oscillatory WSS quantified as the oscillatory shear index (OSI) ranged from (maximum OSI = 0.5 equals zero net WSS) 0.15 to 0.35, <0.05, and <0.05, respectively. Thus, high competitive flow resulted in substantial oscillatory and low WSS. Moderate competitive flow resulted in WSS and OSI similar to the no competitive flow condition. CONCLUSION Graft flow is highly dependent on the degree of competitive flow. High competitive flow was found to produce unfavourable WSS consistent with endothelial dysfunction and subsequent graft narrowing and failure. Partial competitive flow, however, may be better tolerated as it was found to be similar to the ideal condition of no competitive flow.


IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control | 2010

Two-dimensional blood velocity estimation with ultrasound: speckle tracking versus crossed-beam vector doppler based on flow simulations in a carotid bifurcation model

Abigaïl Swillens; Patrick Segers; Hans Torp; Lasse Lovstakken

Detailed imaging of complex blood flow may improve early diagnosis of cardiovascular disease. In clinical practice, non-invasive flow imaging has been limited to one-dimensional Doppler techniques. Searching for multi-dimensional estimators, research has given attention to speckle tracking (ST) and vector Doppler (VD). However, these techniques have yet to be validated for complex flow patterns as may arise in diseased arteries. In this work, the properties of ST and crossed-beam VD are compared with a ground truth for clinically relevant flow using an ultrasonic simulation environment coupled with the output from computational fluid dynamics (CFD). The statistical properties (n = 80) of ST and VD were first evaluated for stationary flow in a tube for varying vessel positions and angles, and for varying noise levels. The parameter study demonstrated VD to be a more robust axial velocity estimator, and similar results were obtained overall for the lateral velocity component. As an example, the relative standard deviation was 15% and 8% for ST compared with 3% and 10% for VD, for the axial and lateral velocity component, respectively. Further, performance was evaluated for pulsatile flow conditions in a stenosed carotid bifurcation model. A linear regression analysis showed that both methods overall had a good agreement to the CFD reference, however VD suffered from more spurious artifacts and was severely hampered by aliasing in parts of the cardiac cycle. ST was less accurate in estimating the axial component, but prevailed in estimating velocities well beyond the Nyquist range. Based on our simulations, both methods may be used to image complex flow behavior in the carotid bifurcation, however, considering also the scanning limitations of VD, ST may provide a more consistent and practical approach. Future work will entail in vitro and in vivo validation of these results.


Computer Methods in Biomechanics and Biomedical Engineering | 2009

The influence of aortic dimensions on calculated wall shear stress in the mouse aortic arch.

Bram Trachet; Abigaïl Swillens; Denis Van Loo; Christophe Casteleyn; Anne De Paepe; Bart Loeys; Patrick Segers

In this paper, the influence of the aortic dimensions of an investigated mouse on its resulting wall shear stress (WSS) was studied. A numerical model of a mouse aortic arch was created based on a micro-CT scan of a vascular corrosion cast of an 8-week-old wild type mouse. This model was then rescaled to obtain five models with aortic root diameters corresponding to five different stages in the mouse life cycle varying from late fetal (0.7 mm) to old adult (1.5 mm). Consistent with literature, WSS values much higher than those normally encountered in humans were found. WSS was found to decrease rapidly in early life stages and to reach a plateau in adulthood, thus supporting a mediating role for WSS in arterial growth. Our results show that WSS values for mice should be interpreted very cautiously, and if possible an animal-specific geometry with animal-specific boundary conditions should be used.


IEEE Transactions on Medical Imaging | 2012

Accuracy of Carotid Strain Estimates From Ultrasonic Wall Tracking: A Study Based on Multiphysics Simulations and In Vivo Data

Abigaïl Swillens; G. De Santis; Joris Degroote; Lasse Lovstakken; Jan Vierendeels; Patrick Segers

We used a multiphysics model to assess the accuracy of carotid strain estimates derived from a 1-D ultrasonic wall tracking algorithm. The presented tool integrates fluid-structure interaction (FSI) simulations with an ultrasound simulator (Field II), which allows comparison of the ultrasound (US) images with a ground truth. Field II represents tissue as random points on which US waves reflect and whose position can be updated based on the flow field and vessel wall deformation from FSI. We simulated the RF-signal of a patient-specific carotid bifurcation, including the blood pool as well as the vessel wall and surrounding tissue. Distension estimates were obtained from a wall tracking algorithm using tracking points at various depths within the wall, and further processed to assess radial and circumferential strain. The simulated data demonstrated that circumferential strain can be estimated with reasonable accuracy (especially for the common carotid artery and at the lumen-intima and media-adventitia interface), but the technique does not allow to reliably assess intra-arterial radial strain. These findings were supported by in vivo data of 10 healthy adults, showing similar circumferential and radial strain profiles throughout the arterial wall. We concluded that these deviations are present due to the complex 3-D vessel wall deformation, the presence of specular reflections and, to a lesser extent, the spatially varying beam profile, with the error depending on the phase in the cardiac cycle and the scanning location.


Advances in Mechanical Engineering | 2014

Supersonic Shear Wave Imaging to Assess Arterial Nonlinear Behavior and Anisotropy: Proof of Principle via Ex Vivo Testing of the Horse Aorta

Darya Shcherbakova; Clement Papadacci; Abigaïl Swillens; Annette Caenen; S. De Bock; Veronique Saey; Koen Chiers; Mickael Tanter; Stephen E. Greenwald; Mathieu Pernot; Patrick Segers

Supersonic shear wave imaging (SSI) is a noninvasive, ultrasound-based technique to quantify the mechanical properties of bulk tissues by measuring the propagation speed of shear waves (SW) induced in the tissue with an ultrasound transducer. The technique has been successfully validated in liver and breast (tumor) diagnostics and is potentially useful for the assessment of the stiffness of arteries. However, SW propagation in arteries is subjected to different wave phenomena potentially affecting the measurement accuracy. Therefore, we assessed SSI in a less complex ex vivo setup, that is, a thick-walled and rectangular slab of an excised equine aorta. Dynamic uniaxial mechanical testing was performed during the SSI measurements, to dispose of a reference material assessment. An ultrasound probe was fixed in an angle position controller with respect to the tissue to investigate the effect of arterial anisotropy on SSI results. Results indicated that SSI was able to pick up stretch-induced stiffening of the aorta. SW velocities were significantly higher along the specimens circumferential direction than in the axial direction, consistent with the circumferential orientation of collagen fibers. Hence, we established a first step in studying SW propagation in anisotropic tissues to gain more insight into the feasibility of SSI-based measurements in arteries.


Journal of Vascular Access | 2013

The accuracy of ultrasound volume flow measurements in the complex flow setting of a forearm vascular access

Koen Van Canneyt; Abigaïl Swillens; Lasse Lovstakken; Luca Antiga; Pascal Verdonck; Patrick Segers

Purpose Maturation of an arterio-venous fistula (AVF) frequently fails, with low post-operative fistula flow as a prognostic marker for this event. As pulsed wave Doppler (PWD) is commonly used to assess volume flow, we studied the accuracy of this measurement in the setting of a radio-cephalic AVF. Methods As in-vivo validation of fistula flow measurements is cumbersome, we performed simulations, integrating computational fluid dynamics with an ultrasound (US) simulator. Flow in the arm was calculated, based on a patient-specific model of the arm vasculature pre and post AVF creation. Raw ultrasound signals were subsequently simulated, from which Doppler spectra were calculated in both a proximal and a distal location. Results The velocity component in the direction of the PWD-US beam (vPWD), in a centered, small, sample volume, can be captured accurately using PWD spectrum mean-tracking (maximum bias [mB] 8.1%). However, when deriving flow rate from these measurements, a high degree of inaccuracy occurs. First, the angle-correction of vPWD towards the velocity along the axis of the vessel is largely influenced by the radial velocity components in the complex flow field (mB=16.3%). Second, the largest error is introduced when transferring the centerline velocity to the cross-sectional mean velocity without any knowledge of the flow profile (mB=97.7%). Conclusions In the setting of a forearm AVF, flow estimates based on PWD are hampered by the complex flow patterns. Overall, flow estimation based on centerline measurement, analyzed by mean-tracking of the RF-spectral estimates, under the assumption of a parabolic flow profile, appeared to provide the most reasonable values.


Ultrasound in Medicine and Biology | 2010

Two-Dimensional Flow Imaging in the Carotid Bifurcation Using a Combined Speckle Tracking and Phase-Shift Estimator: A Study Based on Ultrasound Simulations and in vivo Analysis

Abigaïl Swillens; Patrick Segers; Lasse Lovstakken

A two-dimensional (2-D) blood velocity estimator is presented combining speckle tracking (ST) and phase-shift estimation (PE) to measure lateral (vx) and axial (vz) velocities respectively. Estimator properties were assessed in a carotid bifurcation using ultrasound simulations based on computational fluid dynamics, allowing validation toward a ground truth. Simulation results were supported with in vivo data of a healthy carotid. ST and PE estimates were combined as: (1) vx from 2D-ST and vz from PE, (2) vx from 2D-ST and vz from PE with aliasing correction based on ST and (3) vz from PE and only lateral ST for vx. Regression analysis showed a 35% to 77% decrease in standard deviation for vz for PE compared with ST. Aliasing correction based on ST improved results but also introduced spurious artifacts. A marginal decrease in performance was observed when only tracking laterally. Further work will focus on in vivo trials in patients with carotid plaques.

Collaboration


Dive into the Abigaïl Swillens's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lasse Lovstakken

Norwegian University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bram Trachet

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge