Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Abirami Kugadas is active.

Publication


Featured researches published by Abirami Kugadas.


Immunity | 2017

An Ocular Commensal Protects against Corneal Infection by Driving an Interleukin-17 Response from Mucosal γδ T Cells

Anthony J. St. Leger; Jigar V. Desai; Rebecca A. Drummond; Abirami Kugadas; Fatimah Almaghrabi; Phyllis B. Silver; Kumarkrishna Raychaudhuri; Mihaela Gadjeva; Yoichiro Iwakura; Michail S. Lionakis; Rachel R. Caspi

Summary Mucosal sites such as the intestine, oral cavity, nasopharynx, and vagina all have associated commensal flora. The surface of the eye is also a mucosal site, but proof of a living, resident ocular microbiome remains elusive. Here, we used a mouse model of ocular surface disease to reveal that commensals were present in the ocular mucosa and had functional immunological consequences. We isolated one such candidate commensal, Corynebacterium mastitidis, and showed that this organism elicited a commensal‐specific interleukin‐17 response from &ggr;&dgr; T cells in the ocular mucosa that was central to local immunity. The commensal‐specific response drove neutrophil recruitment and the release of antimicrobials into the tears and protected the eye from pathogenic Candida albicans or Pseudomonas aeruginosa infection. Our findings provide direct evidence that a resident commensal microbiome exists on the ocular surface and identify the cellular mechanisms underlying its effects on ocular immune homeostasis and host defense. Graphical Abstract Figure. No Caption available. HighlightsCorynebacterium mastitidis colonizes the mouse conjunctivaC. mastitidis induces interleukin‐17 production from mucosal &ggr;&dgr; T cellsIntroduction of the commensal to mice that lack it protects the eye from infectionTopical antibiotics cause the ocular surface to be more susceptible to infection &NA; Although the eye is a mucosal site, there has been a long‐standing controversy regarding whether a resident microbiome exists on the ocular surface. St. Leger et al. show that a microorganism that lives on the conjunctiva tunes local mucosal immunity and protects the eye from pathogenic infection.


Journal of Wildlife Diseases | 2014

PCR ASSAY DETECTS MANNHEIMIA HAEMOLYTICA IN CULTURE-NEGATIVE PNEUMONIC LUNG TISSUES OF BIGHORN SHEEP (OVIS CANADENSIS) FROM OUTBREAKS IN THE WESTERN USA, 2009–2010

Sudarvili Shanthalingam; Andrea Goldy; Jegarubee Bavananthasivam; Renuka Subramaniam; Sai Arun Batra; Abirami Kugadas; Bindu Raghavan; Rohana P. Dassanayake; Jessica Jennings-Gaines; Halcyon J. Killion; William H. Edwards; Jennifer Ramsey; Neil J. Anderson; Peregrine Wolff; Kristin Mansfield; Darren L. Bruning; Subramaniam Srikumaran

Abstract Mannheimia haemolytica consistently causes severe bronchopneumonia and rapid death of bighorn sheep (Ovis canadensis) under experimental conditions. However, Bibersteinia trehalosi and Pasteurella multocida have been isolated from pneumonic bighorn lung tissues more frequently than M. haemolytica by culture-based methods. We hypothesized that assays more sensitive than culture would detect M. haemolytica in pneumonic lung tissues more accurately. Therefore, our first objective was to develop a PCR assay specific for M. haemolytica and use it to determine if this organism was present in the pneumonic lungs of bighorns during the 2009–2010 outbreaks in Montana, Nevada, and Washington, USA. Mannheimia haemolytica was detected by the species-specific PCR assay in 77% of archived pneumonic lung tissues that were negative by culture. Leukotoxin-negative M. haemolytica does not cause fatal pneumonia in bighorns. Therefore, our second objective was to determine if the leukotoxin gene was also present in the lung tissues as a means of determining the leukotoxicity of M. haemolytica that were present in the lungs. The leukotoxin-specific PCR assay detected leukotoxin gene in 91% of lung tissues that were negative for M. haemolytica by culture. Mycoplasma ovipneumoniae, an organism associated with bighorn pneumonia, was detected in 65% of pneumonic bighorn lung tissues by PCR or culture. A PCR assessment of distribution of these pathogens in the nasopharynx of healthy bighorns from populations that did not experience an all-age die-off in the past 20 yr revealed that M. ovipneumoniae was present in 31% of the animals whereas leukotoxin-positive M. haemolytica was present in only 4%. Taken together, these results indicate that culture-based methods are not reliable for detection of M. haemolytica and that leukotoxin-positive M. haemolytica was a predominant etiologic agent of the pneumonia outbreaks of 2009–2010.


Clinical and Vaccine Immunology | 2011

A Multivalent Mannheimia/Bibersteinia Vaccine Protects Bighorn Sheep Against Mannheimia haemolytica Challenge

Renuka Subramaniam; Sudarvili Shanthalingam; Jegarubee Bavananthasivam; Abirami Kugadas; Kathleen A. Potter; William J. Foreyt; Douglas C. Hodgins; Patricia E. Shewen; George M. Barrington; Donald P. Knowles; Subramaniam Srikumaran

ABSTRACT Bighorn sheep (BHS) are more susceptible than domestic sheep (DS) to Mannheimia haemolytica pneumonia. Although both species carry M. haemolytica as a commensal bacterium in the nasopharynx, DS carry mostly leukotoxin (Lkt)-positive strains while BHS carry Lkt-negative strains. Consequently, antibodies to surface antigens and Lkt are present at much higher titers in DS than in BHS. The objective of this study was to determine whether repeated immunization of BHS with multivalent Mannheimia-Bibersteinia vaccine will protect them upon M. haemolytica challenge. Four BHS were vaccinated with a culture supernatant vaccine prepared from M. haemolytica serotypes A1 and A2 and Bibersteinia trehalosi serotype T10 on days 0, 21, 35, 49, and 77. Four other BHS were used as nonvaccinated controls. On the day of challenge, 12 days after the last immunization, the mean serum titers of Lkt-neutralizing antibodies and antibodies to surface antigens against M. haemolytica were 1:160 and 1:4,000, respectively. Following intranasal challenge with M. haemolytica A2 (1 × 105 CFU), all four control BHS died within 48 h. Necropsy revealed acute fibrinonecrotic pneumonia characteristic of M. haemolytica infection. None of the vaccinated BHS died during the 8 weeks postchallenge observation period. Radiography at 3 weeks postchallenge revealed no lung lesions in two vaccinated BHS and mild lesions in the other two, which resolved by 8 weeks postchallenge. These results indicate that if BHS can be induced to develop high titers of Lkt-neutralizing antibodies and antibodies to surface antigens, they are likely to survive M. haemolytica challenge which is likely to reduce the BHS population decline due to pneumonia.


BMC Microbiology | 2010

Iron-sparing response of Mycobacterium avium subsp. paratuberculosis is strain dependent.

Harish K. Janagama; Senthilkumar; John P. Bannantine; Abirami Kugadas; Pratik Jagtap; LeeAnn Higgins; Bruce A. Witthuhn; Srinand Sreevatsan

BackgroundTwo genotypically and microbiologically distinct strains of Mycobacterium avium subsp. paratuberculosis (MAP) exist - S and C MAP strains that primarily infect sheep and cattle, respectively. Concentration of iron in the cultivation medium has been suggested as one contributing factor for the observed microbiologic differences. We recently demonstrated that S strains have defective iron storage systems, leading us to propose that these strains might experience iron toxicity when excess iron is provided in the medium. To test this hypothesis, we carried out transcriptional and proteomic profiling of these MAP strains under iron-replete or -deplete conditions.ResultsWe first complemented M. smegmatis ΔideR with IdeR of C MAP or that derived from S MAP and compared their transcription profiles using M. smegmatis mc2155 microarrays. In the presence of iron, sIdeR repressed expression of bfrA and MAP2073c, a ferritin domain containing protein suggesting that transcriptional control of iron storage may be defective in S strain. We next performed transcriptional and proteomic profiling of the two strain types of MAP under iron-deplete and -replete conditions. Under iron-replete conditions, C strain upregulated iron storage (BfrA), virulence associated (Esx-5 and antigen85 complex), and ribosomal proteins. In striking contrast, S strain downregulated these proteins under iron-replete conditions. iTRAQ (isobaric tag for relative and absolute quantitation) based protein quantitation resulted in the identification of four unannotated proteins. Two of these were upregulated by a C MAP strain in response to iron supplementation. The iron-sparing response to iron limitation was unique to the C strain as evidenced by repression of non-essential iron utilization enzymes (aconitase and succinate dehydrogenase) and upregulation of proteins of essential function (iron transport, [Fe-S] cluster biogenesis and cell division).ConclusionsTaken together, our study revealed that C and S strains of MAP utilize divergent metabolic pathways to accommodate in vitro iron stress. The knowledge of the metabolic pathways these divergent responses play a role in are important to 1) advance our ability to culture the two different strains of MAP efficiently, 2) aid in diagnosis and control of Johnes disease, and 3) advance our understanding of MAP virulence.


PLOS Pathogens | 2016

Impact of Microbiota on Resistance to Ocular Pseudomonas aeruginosa-Induced Keratitis

Abirami Kugadas; Stig Hill Christiansen; Saiprasad Sankaranarayanan; Neeraj K. Surana; Stefanie Gauguet; Ryan C. Kunz; Raina N. Fichorova; Thomas Vorup-Jensen; Mihaela Gadjeva

The existence of the ocular microbiota has been reported but functional analyses to evaluate its significance in regulating ocular immunity are currently lacking. We compared the relative contribution of eye and gut commensals in regulating the ocular susceptibility to Pseudomonas aeruginosa–induced keratitis. We find that in health, the presence of microbiota strengthened the ocular innate immune barrier by significantly increasing the concentrations of immune effectors in the tear film, including secretory IgA and complement proteins. Consistent with this view, Swiss Webster (SW) mice that are typically resistant to P. aeruginosa–induced keratitis become susceptible due to the lack of microbiota. This was exemplified by increased corneal bacterial burden and elevated pathology of the germ free (GF) mice when compared to the conventionally maintained SW mice. The protective immunity was found to be dependent on both eye and gut microbiota with the eye microbiota having a moderate, but significant impact on the resistance to infection. These events were IL-1ß–dependent as corneal IL-1ß levels were decreased in the infected GF and antibiotic-treated mice when compared to the SPF controls, and neutralization of IL-1ß increased the ocular bacterial burden in the SPF mice. Monocolonizing GF mice with Coagulase Negative Staphylococcus sp. isolated from the conjunctival swabs was sufficient to restore resistance to infection. Cumulatively, these data underline a previously unappreciated role for microbiota in regulating susceptibility to ocular keratitis. We predict that these results will have significant implications for contact lens wearers, where alterations in the ocular commensal communities may render the ocular surface vulnerable to infections.


Applied and Environmental Microbiology | 2012

Proximity-Dependent Inhibition of Growth of Mannheimia haemolytica by Pasteurella multocida

Jegarubee Bavananthasivam; Rohana P. Dassanayake; Abirami Kugadas; Sudarvili Shanthalingam; Douglas R. Call; Donald P. Knowles; Subramaniam Srikumaran

ABSTRACT Mannheimia haemolytica, Pasteurella multocida, and Bibersteinia trehalosi have been identified in the lungs of pneumonic bighorn sheep (BHS; Ovis canadensis). Of these pathogens, M. haemolytica has been shown to consistently cause fatal pneumonia in BHS under experimental conditions. However, M. haemolytica has been isolated by culture less frequently than the other bacteria. We hypothesized that the growth of M. haemolytica is inhibited by other bacteria in the lungs of BHS. The objective of this study was to determine whether P. multocida inhibits the growth of M. haemolytica. Although in monoculture both bacteria exhibited similar growth characteristics, in coculture with P. multocida there was a clear inhibition of growth of M. haemolytica. The inhibition was detected at mid-log phase and continued through the stationary phase. When cultured in the same medium, the growth of M. haemolytica was inhibited when both bacteria were separated by a membrane that allowed contact (pore size, 8.0 μm) but not when they were separated by a membrane that limited contact (pore size, 0.4 μm). Lytic bacteriophages or bactericidal compounds could not be detected in the culture supernatant fluid from monocultures of P. multocida or from P. multocida-M. haemolytica cocultures. These results indicate that P. multocida inhibits the growth of M. haemolytica by a contact- or proximity-dependent mechanism. If the inhibition of growth of M. haemolytica by P. multocida occurs in vivo as well, it could explain the inconsistent isolation of M. haemolytica from the lungs of pneumonic BHS.


Investigative Ophthalmology & Visual Science | 2017

Role of Microbiota in Strengthening Ocular Mucosal Barrier Function Through Secretory IgA

Abirami Kugadas; Quentin Wright; Jennifer Geddes-McAlister; Mihaela Gadjeva

Purpose The purpose of this study was to evaluate mechanisms controlling secretory IgA (SIgA) production, thereby ensuring maintenance of ocular surface health. Methods To determine whether the presence of specific gut commensal species regulates SIgA levels and IgA transcripts in the eye-associated lymphoid tissues (EALT), specific-pathogen-free (SPF) Swiss Webster (SW) mice were treated with antibiotic cocktails, germ-free (GF) SW mice were reconstituted with diverse commensal gut microbiota, or monocolonized with gut-specific commensals. Proteomic profiling and quantitative real-time polymerase chain reaction (qRT-PCR) were used to quantify SIgA and IgA levels. 16S rDNA sequencing was carried out to characterize commensal microbiota. Results Commensal presence regulated ocular surface SIgA levels and mRNA IgA transcripts in EALT. Oral antibiotic cocktail intake significantly reduced gut commensal presence, while maintaining ocular surface commensal levels reduced SIgA and IgA transcripts in EALT. Analysis of gut microbial communities revealed that SPF SW mice carried abundant Bacteroides organisms when compared to SPF C57BL6/N mice, with B. acidifaciens being the most prominent species in SPF SW mice. Monocolonization of GF SW mice with B. acidifaciens, a strict gut anaerobe, resulted in significant increase of IgA transcripts in the EALT, implying generation of B-cell memory. Conclusions These data illustrated a “gut-eye” axis of immune regulation. Exposure of the host to gut commensal species may serve as a priming signal to generate B-cell repertoires at sites different from the gut, such as EALT, thereby ensuring broad protection.


Journal of Ocular Pharmacology and Therapeutics | 2015

TSP-1 Deficiency Alters Ocular Microbiota: Implications for Sjögren's Syndrome Pathogenesis

Marielle Terzulli; Laura Contreras-Ruiz; Abirami Kugadas; Sharmila Masli; Mihaela Gadjeva

PURPOSE The potential role of commensals as triggering factors that promote inflammation in dry eye disease has not been explored. The objective of this study was to evaluate whether ocular microbiota changes with the onset of dry eye disease in thrombospondin-1-deficient (TSP-1(-/-)) mice, a strain that develops Sjögrens syndrome-like disease. METHODS Conjunctival swabs were collected from TSP-1(-/-) and C57BL/6 mice and analyzed for bacterial presence. Opsonophagocytosis of the bacterial conjunctival isolates derived from the aged TSP-1(-/-) mice by neutrophils derived from either TSP-1(-/-) or C57BL/6 bone marrow was evaluated. The bactericidal activities of TSP-1-derived peptide were examined. RESULTS We found that in TSP-1(-/-) mice, the conjunctival colonization with Staphylococcus aureus and coagulase negative staphylococci sp (CNS) species was significantly increased with aging and preceded that of the wild-type C57BL/6 control mice. This correlated with increased neutrophil infiltration into the conjunctiva of the TSP-1(-/-) mice, suggesting that TSP-1 plays a significant role in regulating immunity to commensals. Accordingly, the TSP-1(-/-) PMNs opsonophagocytozed the ocular commensals less efficiently than the TSP-1-sufficient neutrophils. Furthermore, a TSP-1-derived peptide, 4N1K, exhibited significant antimicrobial activity when compared to a control peptide against commensal sp. CONCLUSION These studies illustrate that alterations in the commensal frequency occur in the early stages of development of Sjögrens-like pathology and suggest that interventions that limit commensal outgrowth such as the use of TSP-1-derived peptides could be used for treatment during the early stages of the disease to reduce the commensal burden and ensuing inflammation.


Veterinary Microbiology | 2014

Growth of Mannheimia haemolytica: Inhibitory agents and putative mechanism of inhibition

Abirami Kugadas

Leukotoxin-producing Mannheimia haemolytica consistently causes fatal pneumonia in bighorn sheep (BHS) under experimental conditions. Surprisingly, by culture methods, it has been isolated from pneumonic BHS lungs less frequently than other bacteria. However, in one study PCR assays detected M. haemolytica from over 70% of the pneumonic lung samples that were negative for this organism by culture, suggesting that the growth of M. haemolytica is inhibited by other bacteria. Previously, we have shown that Bibersteinia trehalosi inhibits the growth of M. haemolytica. Herein we report that 100% of a diverse panel of B. trehalosi isolates (n=55) tested in a bacterial competition assay inhibited the growth of M. haemolytica, suggesting that the inhibitory phenotype is conserved. Further, no plasmids were isolated from any of the 30 B. trehalosi isolates tested, suggesting that the effectors are chromosomally encoded. An earlier study by us showed that Pasteurella multocida also inhibits the growth of M. haemolytica. However, M. haemolytica has not been isolated even from pneumonic BHS lungs that did not carry B. trehalosi or P. multocida. Consequently, we tested Staphylococcus spp., Streptococcus spp., and Escherichia coli, the bacteria that have been detected frequently in pneumonic BHS lungs, for possible inhibition of M. haemolytica. Neither the Staphylococcus spp. nor the Streptococcus sp. strains inhibited the growth of M. haemolytica. E. coli inhibited the growth of M. haemolytica by a proximity-dependent mechanism. Growth inhibition of M. haemolytica by several bacterial species is likely to contribute to the infrequent detection of this bacterium from pneumonic BHS lungs by culture.


Frontiers in Cellular and Infection Microbiology | 2016

A Mycobacterium avium subsp. paratuberculosis predicted serine protease is associated with acid stress and intraphagosomal survival

Abirami Kugadas; Elise A. Lamont; John P. Bannantine; Fernanda M. Shoyama; Evan P Brenner; Harish K. Janagama; Srinand Sreevatsan

The ability to maintain intra-cellular pH is crucial for bacteria and other microbes to survive in diverse environments, particularly those that undergo fluctuations in pH. Mechanisms of acid resistance remain poorly understood in mycobacteria. Although, studies investigating acid stress in M. tuberculosis are gaining traction, few center on Mycobacterium avium subsp. paratuberculosis (MAP), the etiological agent of chronic enteritis in ruminants. We identified a MAP acid stress response network involved in macrophage infection. The central node of this network was MAP0403, a predicted serine protease that shared an 86% amino acid identity with MarP in M. tuberculosis. Previous studies confirmed MarP as a serine protease integral to maintaining intra-bacterial pH and survival in acid in vitro and in vivo. We show that MAP0403 is upregulated in infected macrophages and MAC-T cells that coincided with phagosome acidification. Treatment of mammalian cells with bafilomcyin A1, a potent inhibitor of phagosomal vATPases, diminished MAP0403 transcription. MAP0403 expression was also noted in acidic medium. A surrogate host, M. smegmatis mc2 155, was designed to express MAP0403 and when exposed to either macrophages or in vitro acid stress had increased bacterial cell viability, which corresponds to maintenance of intra-bacterial pH in acidic (pH = 5) conditions, compared to the parent strain. These data suggest that MAP0403 may be the equivalent of MarP in MAP. Future studies confirming MAP0403 as a serine protease and exploring its structure and possible substrates are warranted.

Collaboration


Dive into the Abirami Kugadas's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mihaela Gadjeva

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Bindu Raghavan

Washington State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sai Arun Batra

Washington State University

View shared research outputs
Top Co-Authors

Avatar

Renuka Subramaniam

Washington State University

View shared research outputs
Top Co-Authors

Avatar

William J. Foreyt

Washington State University

View shared research outputs
Top Co-Authors

Avatar

Anthony J. St. Leger

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Donald P. Knowles

Washington State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge