Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Abiye H. Iyo is active.

Publication


Featured researches published by Abiye H. Iyo.


Progress in Neuro-psychopharmacology & Biological Psychiatry | 2011

The mTOR signaling pathway in the prefrontal cortex is compromised in major depressive disorder

Courtney S. Jernigan; Dharmendra B. Goswami; Mark C. Austin; Abiye H. Iyo; Agata Chandran; Craig A. Stockmeier; Beata Karolewicz

Recent studies demonstrate that rapid antidepressant response to ketamine is mediated by activation of the mammalian target of rapamycin (mTOR) signaling pathway, leading to increased synaptic proteins in the prefrontal cortex (PFC) of rats. Our postmortem studies indicate robust deficits in prominent postsynaptic proteins including N-methyl-d-aspartate (NMDA) receptor subunits (NR2A, NR2B), metabotropic glutamate receptor subtype 5 (mGluR5) and postsynaptic density protein 95kDa (PSD-95) in the PFC in major depressive disorder (MDD). We hypothesize that deficits in the mTOR-dependent translation initiation pathway contribute to the molecular pathology seen in the PFC of MDD subjects, and that a rapid reversal of these abnormalities may underlie antidepressant activity. The majority of known translational regulation occurs at the level of initiation. mTOR regulates translation initiation via its downstream components: p70-kDa ribosomal protein S6 kinase (p70S6K), and eukaryotic initiation factors 4E and 4B (eIF4E and eIF4B). In this study, we examined the expression of mTOR and its core downstream signaling targets: p70S6K, eIF4E, and eIF4B in the PFC of 12 depressed subjects and 12 psychiatrically healthy controls using Western blot. Levels of eIF4E phosphorylated at serine 209 (p-eIF4E-Ser209) and eIF4B phosphorylated at serine 504 (p-eIF4B-Ser504) were also examined. Adjacent cortical tissue samples from both cohorts of subjects were used in our previous postmortem analyses. There was a significant reduction in mTOR, p70S6K, eIF4B and p-eIF4B protein expression in MDD subjects relative to controls. No group differences were observed in eIF4E, p-eIF4E or actin levels. Our findings show deficits in mTOR-dependent translation initiation in MDD particularly via the p70S6K/eIF4B pathway, and indicate a potential association between marked deficits in synaptic proteins and dysregulation of mTOR signaling in MDD.


Brain Research | 2006

Agmatine protects against cell damage induced by NMDA and glutamate in cultured hippocampal neurons

Wei-Ping Wang; Abiye H. Iyo; Javier Miguel-Hidalgo; Soundar Regunathan; Meng-Yang Zhu

Agmatine is a polyamine and has been considered as a novel neurotransmitter or neuromodulator in the central nervous system. In the present study, the neuroprotective effect of agmatine against cell damage caused by N-methyl-D-aspartate (NMDA) and glutamate was investigated in cultured rat hippocampal neurons. Lactate dehydrogenase (LDH) activity assay, beta-tubulin III immunocytochemical staining and terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate (dUTP) nick end-labeling (TUNEL) assay were conducted to detect cell damage. Exposure of 12-day neuronal cultures of rat hippocampus to NMDA or glutamate for 1 h caused a concentration-dependent neurotoxicity, as indicated by the significant increase in released LDH activities. Addition of 100 microM agmatine into media ablated the neurotoxicity induced by NMDA or glutamate, an effect also produced by the specific NMDA receptor antagonist dizocilpine hydrogen maleate (MK801). Arcaine, an analog of agmatine with similar structure as agmatine, fully prevented the NMDA- or glutamate-induced neuronal damage. Spermine and putrescine, the endogenous polyamine and metabolic products of agmatine without the guanidine moiety of agmatine, failed to show this effect, indicating a structural relevance for this neuroprotection. Immunocytochemical staining and TUNEL assay confirmed the findings in the LDH measurement. That is, agmatine and MK801 markedly attenuated NMDA-induced neuronal death and significantly reduced TUNEL-positive cell numbers induced by exposure of cultured hippocampal neurons to NMDA. Taken together, these results demonstrate that agmatine can protect cultured hippocampal neurons from NMDA- or glutamate-induced excitotoxicity, through a possible blockade of the NMDA receptor channels or a potential anti-apoptotic property.


Progress in Neuro-psychopharmacology & Biological Psychiatry | 2010

Elevated level of metabotropic glutamate receptor 2/3 in the prefrontal cortex in major depression.

Anteneh M. Feyissa; William L. Woolverton; Jose Javier Miguel-Hidalgo; Zhixia Wang; Patrick B. Kyle; Gregor Hasler; Craig A. Stockmeier; Abiye H. Iyo; Beata Karolewicz

Clinical, postmortem and preclinical research strongly implicates dysregulation of glutamatergic neurotransmission in major depressive disorder (MDD). Recently, metabotropic glutamate receptors (mGluRs) have been proposed as attractive targets for the discovery of novel therapeutic approaches against depression. The aim of this study was to examine mGluR2/3 protein levels in the prefrontal cortex (PFC) from depressed subjects. In addition, to test whether antidepressants influence mGluR2/3 expression we also studied levels of mGluR2/3 in fluoxetine-treated monkeys. Postmortem human prefrontal samples containing Brodmanns area 10 (BA10) were obtained from 11 depressed and 11 psychiatrically healthy controls. Male rhesus monkeys were treated chronically with fluoxetine (dose escalated to 3mg/kg, p.o.; n=7) or placebo (n=6) for 39 weeks. The mGluR2/3 immunoreactivity was investigated using Western blot method. There was a robust (+67%) increase in the expression of the mGlu2/3 protein in the PFC of depressed subjects relative to healthy controls. The expression of mGlu2/3 was unchanged in the PFC of monkeys treated with fluoxetine. Our findings provide the first evidence that mGluR2/3 is elevated in the PFC in MDD. This observation is consistent with reports showing that mGluR2/3 antagonists exhibit antidepressant-like activity in animal models and demonstrates that these receptors are promising targets for the discovery of novel antidepressants.


Progress in Neuro-psychopharmacology & Biological Psychiatry | 2013

Reduced phosphorylation of the mTOR signaling pathway components in the amygdala of rats exposed to chronic stress

Agata Chandran; Abiye H. Iyo; Courtney S. Jernigan; Beata Legutko; Mark C. Austin; Beata Karolewicz

The activity of the mammalian target of rapamycin (mTOR), an ubiquitously expressed serine/threonine kinase, is central to the regulation of translation initiation and, consequently protein synthesis required for long-term potentiation and new synaptic connections. Recent studies show that activation of the mTOR signaling pathway is required for the rapid antidepressant actions of glutamate N-methyl-d-aspartate (NMDA) receptor antagonists such as ketamine. Our prior work documented the first evidence of robust deficits in the mTOR signaling pathway in the prefrontal cortex (PFC) from subjects diagnosed with major depressive disorder (MDD). The goal of this study was to determine whether alterations in mTOR signaling can be observed in rats exposed to the chronic unpredictable stress (CUS) model of depression. In the present study, we examined the effect of CUS on the expression of phosphorylated mTOR and its downstream signaling components in the frontal cortex, hippocampus, amygdala, and dorsal raphe. We also examined the effect of CUS on the expression of kinases that phosphorylate mTOR such as extracellular signal-regulated kinase (ERK1/2) and protein kinase B/Akt (Akt1). In addition, we examined the effect of stress on the phosphorylation of GluR1 an, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor subunit. We found that eight-weeks of CUS exposure significantly decreased the phosphorylation levels of mTOR and its downstream signaling components in the amygdala. Reduced level of phospho-mTOR in the amygdala was accompanied by decreased phosphorylation of ERK-1/2, Akt-1, and GluR1. No significant changes were seen in the frontal cortex, hippocampus, or dorsal raphe. Our study demonstrates that long-term stress exposure results in brain region-specific abnormalities in signaling pathways previously linked to novel mechanisms for rapid antidepressant effects. These observations are in line with evidence showing that mTOR and its upstream and downstream signaling partners could be important targets for the development of novel antidepressants.


Journal of Neurochemistry | 2006

Expression of arginine decarboxylase in brain regions and neuronal cells

Abiye H. Iyo; Meng-Yang Zhu; Gregory A. Ordway; Soundar Regunathan

After our initial report of a mammalian gene for arginine decarboxylase, an enzyme for the synthesis of agmatine from arginine, we have determined the regional expression of ADC in rat. We have analyzed the expression of ADC in rat brain regions by activity, protein and mRNA levels, and the regulation of expression in neuronal cells by RNA interference. In rat brain, ADC was widely expressed in major brain regions, with a substantial amount in hypothalamus, followed by cortex, and with least amounts in locus coeruleus and medulla. ADC mRNA was detected in primary astrocytes and C6 glioma cells. While no ADC message was detected in fresh neurons (3 days old), significant message appeared in differentiated neurons (3 weeks old). PC12 cells, treated with nerve growth factor, had higher ADC mRNA compared with naive cells. The siRNA mixture directed towards the N‐terminal regions of ADC cDNA down‐regulated the levels of mRNA and protein in cultured neurons/C6 glioma cells and these cells produced lower agmatine. Thus, this study demonstrates that ADC message is expressed in rat brain regions, that it is regulated in neuronal cells and that the down‐regulation of ADC activity by specific siRNA leads to lower agmatine production.


Neuroscience Letters | 2010

Chronic social defeat downregulates the 5-HT1A receptor but not Freud-1 or NUDR in the rat prefrontal cortex.

Niamh Kieran; Xiao-Ming Ou; Abiye H. Iyo

The serotonin 1A receptor (5-HT1A) and its associated transcriptional regulators, five prime repressor element under dual repression (Freud-1) and nuclear-deformed epidermal autoregulatory factor (NUDR/Deaf-1) have been previously found to be the repressors for 5-HT1A in the serotonergic raphe neurons, and are also altered in postmortem brains of individuals with major depressive disorder (MDD) and in rats exposed to chronic restraint stress. We sought to find out if rats exposed to chronic social defeat (CSD) stress also show altered expression of these genes. Adult male Wistar rats were exposed to CSD stress for four consecutive weeks following which they were sacrificed and gene expression assessed in the prefrontal cortex (PFC) by quantitative real-time polymerase chain reaction. While CSD had no significant effects on NUDR and Freud-1 mRNA levels, 5-HT1A mRNA levels were significantly downregulated in defeated animals. The data suggest that regulatory factors other than Freud-1 and NUDR may be involved in the regulation of 5-HT1A expression in PFC during CSD stress. Furthermore, decreased levels of 5-HT1A following social defeat in the PFC are consistent with human postmortem results for this receptor in major depression and demonstrate the possibility that this receptor is involved in the pathophysiology of depression and other stress related disorders.


Progress in Neuro-psychopharmacology & Biological Psychiatry | 2013

Gene expression analysis of novel genes in the prefrontal cortex of major depressive disorder subjects.

Dharmendra B. Goswami; Courtney S. Jernigan; Agata Chandran; Abiye H. Iyo; Warren L. May; Mark C. Austin; Craig A. Stockmeier; Beata Karolewicz

Dysregulation of the glutamatergic system has been implicated not only in the treatment of major depressive disorder (MDD), but also in the excitotoxic effects of stress and anxiety on the prefrontal cortex, which may precede the onset of a depressive episode. Our previous studies demonstrate marked deficits in prominent postsynaptic proteins involved in glutamate neurotransmission in the prefrontal cortex (PFC), Brodmanns area 10 (BA 10) from subjects diagnosed with major depressive disorder (MDD). In the same group of subjects we have identified deficits in expression and phosphorylation level of key components of the mammalian target of rapamycin (mTOR) signaling pathway, known to regulate translation initiation. Based on our previous findings, we have postulated that glutamate-dependent dysregulation of mTOR-initiated protein synthesis in the PFC may underlie the pathology of MDD. The aim of this study was to use the NanoString nCounter System to perform analysis of genes coding for glutamate transporters, glutamate metabolizing enzymes, neurotrophic factors and other intracellular signaling markers involved in glutamate signaling that were not previously investigated by our group in the PFC BA 10 from subjects with MDD. We have analyzed a total of 200 genes from 16 subjects with MDD and 16 healthy controls. These are part of the same cohort used in our previous studies. Setting our cutoff p-value≤0.01, marked upregulation of genes coding for mitochondrial glutamate carrier (GC1; p=0.0015), neuropilin 1 (NRP-1; p=0.0019), glutamate receptor ionotropic N-methyl-d-aspartate-associated protein 1 (GRINA; p=0.0060), and fibroblast growth factor receptor 1 (FGFR-1; p=0.010) was identified. No significant differences in expression of the remaining 196 genes were observed between MDD subjects and controls. While upregulation of FGFR-1 has been previously shown in MDD; abnormalities in GC-1, GRINA, and NRP-1 have not been reported. Therefore, this postmortem study identifies GC1, GRINA, and NRP-1 as novel factors associated with MDD; however, future studies will be needed to address the significance of these genes in the pathophysiology of depression and antidepressant activity.


Journal of Psychiatric Research | 2015

Oligodendrocyte morphometry and expression of myelin – Related mRNA in ventral prefrontal white matter in major depressive disorder

Grazyna Rajkowska; Gouri J. Mahajan; Dorota Maciag; Monica Sathyanesan; Abiye H. Iyo; Mohadetheh Moulana; Patrick B. Kyle; William L. Woolverton; Jose Javier Miguel-Hidalgo; Craig A. Stockmeier; Samuel S. Newton

White matter disturbance in the ventral prefrontal cortex (vPFC) in major depressive disorder (MDD) has been noted with diffusion tensor imaging (DTI). However, the cellular and molecular pathology of prefrontal white matter in MDD and potential influence of antidepressant medications is not fully understood. Oligodendrocyte morphometry and myelin-related mRNA and protein expression was examined in the white matter of the vPFC in MDD. Sections of deep and gyral white matter from the vPFC were collected from 20 subjects with MDD and 16 control subjects. Density and size of CNPase-immunoreactive (-IR) oligodendrocytes were estimated using 3-dimensional cell counting. While neither density nor soma size of oligodendrocytes was significantly affected in deep white matter, soma size was significantly decreased in the gyral white matter in MDD. In rhesus monkeys treated chronically with fluoxetine there was no significant effect on oligodendrocyte morphometry. Using quantitative RT-PCR to measure oligodendrocyte-related mRNA for CNPase, PLP1, MBP, MOG, MOBP, Olig1 and Olig2, in MDD there was a significantly reduced expression of PLP1 mRNA (which positively correlated with smaller sizes) and increased expression of mRNA for CNPase, OLIG1 and MOG. The expression of CNPase protein was significantly decreased in MDD. Altered expression of four myelin genes and CNPase protein suggests a mechanism for the degeneration of cortical axons and dysfunctional maturation of oligodendrocytes in MDD. The change in oligodendrocyte morphology in gyral white matter may parallel altered axonal integrity as revealed by DTI.


Neuroscience | 2009

Differential regulation of the serotonin 1 A transcriptional modulators five prime repressor element under dual repression-1 and nuclear-deformed epidermal autoregulatory factor by chronic stress.

Abiye H. Iyo; Niamh Kieran; Agata Chandran; Paul R. Albert; Ivy Wicks; Garth Bissette; Mark C. Austin

Chronic stress is known to affect brain areas involved in learning and emotional responses. These changes, thought to be related to the development of cognitive deficits are evident in major depressive disorder and other stress-related pathophysiologies. The serotonin-related transcription factors (Freud-1/CC2D1A; five prime repressor element under dual repression/coiled-coil C2 domain 1a, and NUDR/Deaf-1; nuclear-deformed epidermal autoregulatory factor) are two important regulators of the 5-HT1A receptor. Using Western blotting and quantitative real-time polymerase chain reaction (qPCR) we examined the expression of mRNA and proteins for Freud-1, NUDR, and the 5-HT1A receptor in the prefrontal cortex (PFC) of male rats exposed to chronic restraint stress (CRS; 6 h/day for 21 days). After 21 days of CRS, significant reductions in both Freud-1 mRNA and protein were observed in the PFC (36.8% and 32%, respectively; P<0.001), while the levels of both NUDR protein and mRNA did not change significantly. Consistent with reduced Freud-1 protein, 5-HT1A receptor mRNA levels were equally upregulated in the PFC, while protein levels actually declined, suggesting post-transcriptional receptor downregulation. The data suggest that CRS produces distinct alterations in the serotonin system specifically altering Freud-1 and the 5-HT1A receptor in the PFC of the male rat while having no effect on NUDR. These results point to the importance of understanding the mechanism for the differential regulation of Freud-1 and NUDR in the PFC as a basis for understanding the related effects of chronic stress on the serotonin system (serotonin-related transcription factors) and stress-related disorders like depression.


Neuroscience | 2010

Chronic corticosterone administration down-regulates metabotropic glutamate receptor 5 protein expression in the rat hippocampus

Abiye H. Iyo; Anteneh M. Feyissa; Agata Chandran; Mark C. Austin; Soundar Regunathan; Beata Karolewicz

Several lines of evidence suggest a dysfunctional glutamate system in major depressive disorder (MDD). Recently, we reported reduced levels of metabotropic glutamate receptor subtype 5 (mGluR5) in postmortem brains in MDD, however the neurobiological mechanisms that induce these abnormalities are unclear. In the present study, we examined the effect of chronic corticosterone (CORT) administration on the expression of mGluR5 protein and mRNA in the rat frontal cortex and hippocampus. Rats were injected with CORT (40 mg/kg s.c.) or vehicled once daily for 21 days. The expression of mGluR5 protein and mRNA was assessed by Western blotting and quantitative real-time PCR (qPCR). In addition, mGluR1 protein was measured in the same animals. The results revealed that while there was a significant reduction (-27%, P=0.0006) in mGluR5 protein expression in the hippocampus from CORT treated rats, mRNA levels were unchanged. Also unchanged were mGluR5 mRNA and protein levels in the frontal cortex and mGluR1 protein levels in both brain regions. Our findings provide the first evidence that chronic CORT exposure regulates the expression of mGluR5 and are in line with previous postmortem and imaging studies showing reduced mGluR5 in MDD. Our findings suggest that elevated levels of glucocorticoids may contribute to impairments in glutamate neurotransmission in MDD.

Collaboration


Dive into the Abiye H. Iyo's collaboration.

Top Co-Authors

Avatar

Mark C. Austin

University of Mississippi Medical Center

View shared research outputs
Top Co-Authors

Avatar

Agata Chandran

University of Mississippi Medical Center

View shared research outputs
Top Co-Authors

Avatar

Beata Karolewicz

University of Mississippi Medical Center

View shared research outputs
Top Co-Authors

Avatar

Craig A. Stockmeier

University of Mississippi Medical Center

View shared research outputs
Top Co-Authors

Avatar

Meng-Yang Zhu

University of Mississippi Medical Center

View shared research outputs
Top Co-Authors

Avatar

Soundar Regunathan

University of Mississippi Medical Center

View shared research outputs
Top Co-Authors

Avatar

Courtney S. Jernigan

University of Mississippi Medical Center

View shared research outputs
Top Co-Authors

Avatar

Jose Javier Miguel-Hidalgo

University of Mississippi Medical Center

View shared research outputs
Top Co-Authors

Avatar

Patrick B. Kyle

University of Mississippi Medical Center

View shared research outputs
Top Co-Authors

Avatar

William L. Woolverton

University of Mississippi Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge