Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Abolanle S. Adekunle is active.

Publication


Featured researches published by Abolanle S. Adekunle.


Materials | 2015

Adsorption, Thermodynamic and Quantum Chemical Studies of 1-hexyl-3-methylimidazolium Based Ionic Liquids as Corrosion Inhibitors for Mild Steel in HCl

Motsie E. Mashuga; Lukman O. Olasunkanmi; Abolanle S. Adekunle; Sasikumar Yesudass; Mwombeki Mwadham Kabanda; Eno E. Ebenso

The inhibition of mild steel corrosion in 1 M HCl solution by some ionic liquids (ILs) namely, 1-hexyl-3-methylimidazolium trifluoromethanesulfonate [HMIM][TfO], 1-hexyl-3-methylimidazolium tetrafluoroborate [HMIM][BF4], 1-hexyl-3-methylimidazolium hexafluorophosphate [HMIM][PF6], and 1-hexyl-3-methylimidazolium iodide [HMIM][I] was investigated using electrochemical measurements, spectroscopic analyses and quantum chemical calculations. All the ILs showed appreciably high inhibition efficiency. At 303 K, the results of electrochemical measurements indicated that the studied ILs are mixed-type inhibitors. The adsorption studies showed that all the four ILs adsorb spontaneously on steel surface with [HMIM][TfO], [HMIM][BF4] and [HMIM][I] obeying Langmuir adsorption isotherm, while [HMIM][PF6] conformed better with Temkin adsorption isotherm. Spectroscopic analyses suggested the formation of Fe/ILs complexes. Some quantum chemical parameters were calculated to corroborate experimental results.


RSC Advances | 2015

Synthesized photo-cross-linking chalcones as novel corrosion inhibitors for mild steel in acidic medium: experimental, quantum chemical and Monte Carlo simulation studies

Baskar Ramaganthan; Mayakrishnan Gopiraman; Lukman O. Olasunkanmi; Mwadham M. Kabanda; Sasikumar Yesudass; Indra Bahadur; Abolanle S. Adekunle; I.B. Obot; Eno E. Ebenso

New chalcone derivatives namely (E)-(1-(5-(4-(3-(4-methylphenyl)-3-oxoprop-1-enyl)phenoxy)pentyl)-1H-1,2,3-triazol-4-yl)methyl acrylate (CH-5), (E)-(1-(5-(4-(3-(4-methylphenyl)-3-oxoprop-1-enyl)phenoxy)hexyl)-1H-1,2,3-triazol-4-yl)methyl acrylate (CH-6) and (E)-(1-(5-(4-(3-(4-methylphenyl)-3-oxoprop-1-enyl)phenoxy)decyl)-1H-1,2,3-triazol-4-yl) methyl acrylate (CH-10) were synthesized and characterized by Fourier transform infrared (FT-IR) and nuclear magnetic resonance (NMR) spectroscopic techniques. Ultraviolet-visible (UV-vis) spectra of the synthesized compounds confirmed that the chalcones undergo photo-cross-linking upon irradiation with UV-light. Potentiodynamic polarization measurements showed that both the intact and photo-cross-linked chalcones are mixed-type corrosion inhibitors for mild steel in aqueous hydrochloric acid. The EIS results showed an increase in charge transfer resistance with increasing concentration of the inhibitors. The chalcone derivatives adsorb spontaneously on the mild steel surface and their adsorption obeyed the Langmuir adsorption isotherm. The adsorption mode revealed the possibility of competitive physisorption and chemisorption mechanisms. Scanning electron microscopy coupled with energy dispersive X-ray spectroscopy (SEM-EDX) analyses confirmed that the chalcones formed a protective film on the mild steel surface. The overall results showed that the photo-cross-linked chalcones are better corrosion inhibitors than the intact chalcones. The results of quantum chemical calculations and Monte Carlo simulation studies are in good agreement with experimental results.


Molecules | 2015

Porphyrins as Corrosion Inhibitors for N80 Steel in 3.5% NaCl Solution: Electrochemical, Quantum Chemical, QSAR and Monte Carlo Simulations Studies

Ambrish Singh; Yuanhua Lin; M.A. Quraishi; Lukman O. Olasunkanmi; Omolola E. Fayemi; Yesudass Sasikumar; Baskar Ramaganthan; Indra Bahadur; I.B. Obot; Abolanle S. Adekunle; Mwadham M. Kabanda; Eno E. Ebenso

The inhibition of the corrosion of N80 steel in 3.5 wt. % NaCl solution saturated with CO2 by four porphyrins, namely 5,10,15,20-tetrakis(4-hydroxyphenyl)-21H,23H-porphyrin (HPTB), 5,10,15,20-tetra(4-pyridyl)-21H,23H-porphyrin (T4PP), 4,4′,4″,4‴-(porphyrin-5,10,15,20-tetrayl)tetrakis(benzoic acid) (THP) and 5,10,15,20-tetraphenyl-21H,23H-porphyrin (TPP) was studied using electrochemical impedance spectroscopy (EIS), potentiodynamic polarization, scanning electrochemical microscopy (SECM) and scanning electron microscopy (SEM) techniques. The results showed that the inhibition efficiency, η% increases with increasing concentration of the inhibitors. The EIS results revealed that the N80 steel surface with adsorbed porphyrins exhibited non-ideal capacitive behaviour with reduced charge transfer activity. Potentiodynamic polarization measurements indicated that the studied porphyrins acted as mixed type inhibitors. The SECM results confirmed the adsorption of the porphyrins on N80 steel thereby forming a relatively insulated surface. The SEM also confirmed the formation of protective films of the porphyrins on N80 steel surface thereby protecting the surface from direct acid attack. Quantum chemical calculations, quantitative structure activity relationship (QSAR) were also carried out on the studied porphyrins and the results showed that the corrosion inhibition performances of the porphyrins could be related to their EHOMO, ELUMO, ω, and μ values. Monte Carlo simulation studies showed that THP has the highest adsorption energy, while T4PP has the least adsorption energy in agreement with the values of σ from quantum chemical calculations.


Molecules | 2015

Adsorption and Corrosion Inhibition Studies of Some Selected Dyes as Corrosion Inhibitors for Mild Steel in Acidic Medium: Gravimetric, Electrochemical, Quantum Chemical Studies and Synergistic Effect with Iodide Ions

Thabo Peme; Lukman O. Olasunkanmi; Indra Bahadur; Abolanle S. Adekunle; Mwadham M. Kabanda; Eno E. Ebenso

The corrosion inhibition properties of some organic dyes, namely Sunset Yellow (SS), Amaranth (AM), Allura Red (AR), Tartrazine (TZ) and Fast Green (FG), for mild steel corrosion in 0.5 M HCl solution, were investigated using gravimetric, potentiodynamic polarization techniques and quantum chemical calculations. The results showed that the studied dyes are good corrosion inhibitors with enhanced inhibition efficiencies. The inhibition efficiency of all the studied dyes increases with increase in concentration, and decreases with increase in temperature. The results showed that the inhibition efficiency of the dyes increases in the presence of KI due to synergistic interactions of the dye molecules with iodide (I−) ions. Potentiodynamic polarization results revealed that the studied dyes are mixed-type inhibitors both in the absence and presence of KI. The adsorption of the studied dyes on mild steel surface, with and without KI, obeys the Langmuir adsorption isotherm and involves physical adsorption mechanism. Quantum chemical calculations revealed that the most likely sites in the dye molecules for interactions with mild steel are the S, O, and N heteroatoms.


RSC Advances | 2015

Electrochemical response of nitrite and nitric oxide on graphene oxide nanoparticles doped with Prussian blue (PB) and Fe2O3 nanoparticles

Abolanle S. Adekunle; Seonyane Lebogang; Portia L. Gwala; Tebogo P. Tsele; Lukman O. Olasunkanmi; Fayemi O. Esther; Diseko Boikanyo; Ntsoaki Mphuthi; John Adekunle Oyedele Oyekunle; A. O. Ogunfowokan; Eno E. Ebenso

Electrocatalytic behaviour of graphene oxide (GO), iron(III) oxide (Fe2O3) and Prussian blue (PB) nanoparticles and their nanocomposite towards nitrite (NO2−) and nitric oxide (NO) oxidation in neutral and acidic media respectively was investigated on a platinum (Pt) modified electrode. Successful synthesis of these nano materials was confirmed using microscopic and spectroscopic techniques. Successful modification of the electrode was confirmed using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The results showed that the Pt–GO–Fe2O3 and Pt–GO–PB nanocomposite modified electrodes gave a faster electron transfer process in both a 5 mM Ferri/Ferro ([Fe(CN)6]3−/4−) redox probe and 0.1 M phosphate buffer solution (PBS). The Pt–GO–Fe2O3 and Pt–GO–PB electrodes also gave an enhanced NO2− and NO oxidation current compared with bare Pt and the other electrodes studied. Electrocatalytic oxidation of the analyte occurred through a simple diffusion process but were characterized with some level of adsorption. Tafel slopes b of 468.4, 305.2 mV dec−1 (NO2−, NO); and 311.5, 277.2 mV dec−1 (NO2−, NO) were obtained for the analyte at the Pt–GO–Fe2O3 and Pt–GO–PB electrode respectively. The Pt–GO–Fe2O3 limit of detection and sensitivity in NO2− and NO are 6.60 μM (0.0084 μA μM−1) and 13.04 μM (0.0160 μA μM−1) respectively, while those of the Pt–GO–PB electrode are 16.58 μM (0.0093 μA μM−1) and 16.50 μM (0.0091 μA μM−1). The LoD compared favourably with literature reported values. Pt–GO–Fe2O3 gave a better performance to NO2− and NO electrooxidation, good resistance to electrode fouling, a higher catalytic rate constant and lower limit of detection. The adsorption equilibrium constant β and the standard free energy change ΔG0 due to adsorption are 10.29 × 103 M−1 (−22.89 kJ mol−1) and 3.26 × 103 M−1 (−20.04 kJ mol−1) for nitrite and nitric oxide respectively at the Pt–GO–Fe2O3 electrode. An interference study has also been reported. The fabricated sensors are easy to prepare, cost effective and can be applied for real sample analysis of nitrite and nitric oxide in food, water, biological and environmental samples.


Materials | 2015

A Novel Schiff Base of 3-acetyl-4-hydroxy-6-methyl-(2H)pyran-2-one and 2,2'-(ethylenedioxy)diethylamine as potential corrosion inhibitor for mild steel in acidic medium

Jonnie N. Asegbeloyin; Paul M. Ejikeme; Lukman O. Olasunkanmi; Abolanle S. Adekunle; Eno E. Ebenso

The corrosion inhibition activity of a newly synthesized Schiff base (SB) from 3-acetyl-4-hydroxy-6-methyl-(2H)-pyran-2-one and 2,2-(ethylenedioxy)diethylamine was investigated on the corrosion of mild steel in 1 M HCl solution using potentiodynamic polarization and electrochemical impedance spectroscopic techniques. Ultraviolet-visible (UV-vis) and Raman spectroscopic techniques were used to study the chemical interactions between SB and mild steel surface. SB was found to be a relatively good inhibitor of mild steel corrosion in 1 M HCl. The inhibition efficiency increases with increase in concentration of SB. The inhibition activity of SB was ascribed to its adsorption onto mild steel surface, through physisorption and chemisorption, and described by the Langmuir adsorption model. Quantum chemical calculations indicated the presence of atomic sites with potential nucleophilic and electrophilic characteristics with which SB can establish electronic interactions with the charged mild steel surface.


Scientific Reports | 2017

Phthalocyanine Doped Metal Oxide Nanoparticles on Multiwalled Carbon Nanotubes Platform for the detection of Dopamine

Ntsoaki Mphuthi; Abolanle S. Adekunle; Omolola E. Fayemi; Lukman O. Olasunkanmi; Eno E. Ebenso

The electrocatalytic properties of metal oxides (MOu2009=u2009Fe3O4, ZnO) nanoparticles doped phthalocyanine (Pc) and functionalized MWCNTs, decorated on glassy carbon electrode (GCE) was investigated. Successful synthesis of the metal oxide nanoparticles and the MO/Pc/MWCNT composite were confirmed using UV-Vis, EDX, XRD and TEM techniques. Successful modification of GCE with the MO and their composite was also confirmed using cyclic voltammetry (CV) technique. GCE-MWCNT/ZnO/29H,31H-Pc was the best electrode towards DA detection with very low detection limit (0.75u2009μM) which compared favourably with literature, good sensitivity (1.45u2009μA/μM), resistance to electrode fouling, and excellent ability to detect DA without interference from AA signal. Electrocatalytic oxidation of DA on GCE-MWCNT/ZnO/29H,31H-Pc electrode was diffusion controlled but characterized with some adsorption of electro-oxidation reaction intermediates products. The fabricated sensors are easy to prepare, cost effective and can be applied for real sample analysis of dopamine in drug composition. The good electrocatalytic properties of 29H,31H-Pc and 2,3-Nc were related to their (quantum chemically derived) frontier molecular orbital energies and global electronegativities. The better performance of 29H,31H-Pc than 2,3-Nc in aiding electrochemical oxidation of DA might be due to its better electron accepting ability, which is inferred from its lower ELUMO and higher χ.


Scientific Reports | 2016

Electrocatalytic oxidation of Epinephrine and Norepinephrine at metal oxide doped phthalocyanine/MWCNT composite sensor

Ntsoaki Mphuthi; Abolanle S. Adekunle; Eno E. Ebenso

Glassy carbon electrode (GCE) was modified with metal oxides (MOu2009=u2009Fe3O4, ZnO) nanoparticles doped phthalocyanine (Pc) and functionalized MWCNTs, and the electrocatalytic properties were studied. Successful synthesis of the metal oxide nanoparticles and the MO/Pc/MWCNT composite were confirmed using FTIR, Raman and SEM techniques. The electrodes were characterized using cyclic voltammetry (CV) technique. The electrocatalytic behaviour of the electrode towards epinephrine (EP) and norepinephrine (NE) oxidation was investigated using CV and DPV. Result showed that GCE-MWCNT/Fe3O4/2,3-Nc, GCE-MWCNT/Fe3O429H,31H-Pc, GCE-MWCNT/ZnO/2,3-Nc and GCE-MWCNT/ZnO/29H,31H-Pc electrodes gave enhanced EP and NE current response. Stability study indicated that the four GCE-MWCNT/MO/Pc modified electrodes were stable against electrode fouling effect with the percentage NE current drop of 5.56–5.88% after 20 scans. GCE-MWCNT/Fe3O4/29H,31H-Pc gave the lowest limit of detection (4.6u2009μM) towards EP while MWCNT/ZnO/29H,31H-Pc gave the lowest limit of detection (1.7u2009μM) towards NE. The limit of detection and sensitivity of the electrodes compared well with literature. Electrocatalytic oxidation of EP and NE on GCE-MWCNT/MO/Pc electrodes was diffusion controlled with some adsorption of electro-oxidation reaction intermediates products. The electrodes were found to be electrochemically stable, reusable and can be used for the analysis of EP and NE in real life samples.


Journal of Biosensors and Bioelectronics | 2015

Metal Oxide Nanoparticles/Multi-walled Carbon Nanotube Nanocomposite Modified Electrode for the Detection of Dopamine: Comparative Electrochemical Study

Omolola E. Fayemi; Abolanle S. Adekunle; Eno E. Ebenso

Electrochemical properties and sensor application of multi-walled carbon nanotubes (MWCNTs), doped with metal oxides [(MO=nickel oxide (NiO), zinc oxide (ZnO) and iron oxide (Fe3O4)] nanoparticles was investigated using FTIR, XRD, UV-vis spectroscopy, Raman spectroscopy, TEM, SEM, EDX, and cyclic voltammetry techniques. Electrochemical oxidation of dopamine on a glassy carbon electrode (GCE) modified with multi-walled carbon nanotubes doped with metal oxides (GCE/MWCNT/NiO, GCE/MWCNT/ZnO, GCE/MWCNT/Fe3O4) was examined by cyclic voltammetry, EIS and square wave voltammetry in 0.1 M phosphate buffer solution PBS at pH 7. The results were compared with those obtained on bare GCE, GCE/MWCNT and MO GCE modified electrodes (GCE/NiO, GCE/ZnO, GCE/Fe3O4). All electrodes were conditioned at potential of 0.2V (vs Ag/AgCl, sat’d KCl) in DA solution for EIS experiment. It was found that the multi- walled carbon nanotubes improve remarkably the reactivity of NiO, ZnO and Fe3O4 for dopamine oxidation. The GCE/MWCNT/NiO, GCE/MWCNT/ZnO, GCE/MWCNT/Fe3O4 electrodes exhibited good linear properties in the concentration range from 4 × 10-5 μM to 6.25 μM for the quantitative analysis of dopamine (DA) with a limit of detection of 7.99 × 10-12 M, 3.742 × 10-7 M and 1.386 × 10-6 M respectively. The limit of detection of GCE/MWCNT/NiO was better than the other two nanocomposites modified electrodes. The interference study also revealed no AA interference signal at AA concentration 1000 times that of DA. The DPV techniques give well distinct peaks for the DA and AA and a wider separation potential. The prepared electrode exhibited satisfactory stability and long shelf life when stored at ambient conditions. It has been demonstrated that the GCE/MWCNT/NiO modified electrode can be successfully used for the assay of dopamine in some real samples.


Journal of Solid State Electrochemistry | 2013

MWCNTs/metal (Ni, Co, Fe) oxide nanocomposite as potential material for supercapacitors application in acidic and neutral media

Abolanle S. Adekunle; Kenneth I. Ozoemena; Bolade O. Agboola

Supercapacitive properties of synthesised metal oxides nanoparticles (MO where M = Ni, Co, Fe) integrated with multi-wall carbon nanotubes (MWCNT) on basal plane pyrolytic graphite electrode (BPPGE) were investigated. Successful modification of the electrode with the MWCNT-MO nanocomposite was confirmed with spectroscopic and microscopic techniques. Supercapacitive properties of the modified electrodes in sulphuric acid (H2SO4) and sodium sulphate (Na2SO4) electrolytes were investigated using cyclic voltammetry, electrochemical impedance spectroscopy and galvanostatic constant current charge–discharge (CD) techniques. The specific capacitance values followed similar trend with that of the cyclic voltammetry and the electrochemical impedance experiments and are slightly lower than values obtained using the galvanostatic charge–discharge cycling. MWCNT-NiO-based electrode gave best specific capacitance of 433.8xa0mFu2009cm−2 (ca 2,119xa0Fu2009g−1) in H2SO4. The electrode exhibited high electrochemical reproducibility with no significant changes over 1,000 cyclic voltammetry cycles.

Collaboration


Dive into the Abolanle S. Adekunle's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kenneth I. Ozoemena

Council of Scientific and Industrial Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bhekie B. Mamba

University of South Africa

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. O. Ogunfowokan

Obafemi Awolowo University

View shared research outputs
Top Co-Authors

Avatar

Bolade O. Agboola

Council for Scientific and Industrial Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge