Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Abraham I. Harte is active.

Publication


Featured researches published by Abraham I. Harte.


Physical Review D | 2013

Magnetorotational instability in relativistic hypermassive neutron stars

Daniel M. Siegel; Riccardo Ciolfi; Abraham I. Harte; Luciano Rezzolla

A differentially rotating hypermassive neutron star (HMNS) is a metastable object which can be formed in the merger of neutron-star binaries. The eventual collapse of the HMNS into a black hole is a key element in generating the physical conditions expected to accompany the launch of a short gamma-ray burst. We investigate the influence of magnetic fields on HMNSs by performing three-dimensional simulations in general-relativistic magnetohydrodynamics. In particular, we provide direct evidence for the occurrence of the magnetorotational instability (MRI) in HMNS interiors. For the first time in simulations of these systems, rapidly-growing and spatially-periodic structures are observed to form with features like those of the channel flows produced by the MRI in other systems. Moreover, the growth time and wavelength of the fastest-growing mode are extracted and compared successfully with analytical predictions. The MRI emerges as an important mechanism to amplify magnetic fields over the lifetime of the HMNS, whose collapse to a black hole is accelerated. The evidence provided here that the MRI can actually develop in HMNSs could have a profound impact on the outcome of the merger of neutron-star binaries and on its connection to short gamma-ray bursts.


Physical Review D | 2014

Gravitational Self-Torque and Spin Precession in Compact Binaries

Sam R. Dolan; Niels Warburton; Abraham I. Harte; Alexandre Le Tiec; Barry Wardell; Leor Barack

We calculate the effect of self-interaction on the “geodetic” spin precession of a compact body in a strong-field orbit around a black hole. Specifically, we consider the spin precession angle ? per radian of orbital revolution for a particle carrying mass ? and spin s?(G/c)?2 in a circular orbit around a Schwarzschild black hole of mass M??. We compute ? through O(?/M) in perturbation theory, i.e, including the correction ?? (obtained numerically) due to the torque exerted by the conservative piece of the gravitational self-field. Comparison with a post-Newtonian (PN) expression for ??, derived here through 3PN order, shows good agreement but also reveals strong-field features which are not captured by the latter approximation. Our results can inform semianalytical models of the strong-field dynamics in astrophysical binaries, important for ongoing and future gravitational-wave searches


Physical Review D | 2002

Mass loss by a scalar charge in an expanding universe

Lior M. Burko; Abraham I. Harte; Eric Poisson

We study the phenomenon of mass loss by a scalar charge — a point particle that acts a source for a noninteracting scalar field — in an expanding universe. The charge is placed on comoving world lines of two cosmological spacetimes: a de Sitter universe, and a spatially-flat, matter-dominated universe. In both cases, we find that the particle’s rest mass is not a constant, but that it changes in response to the emission of monopole scalar radiation by the particle. In de Sitter spacetime, the particle radiates all of its mass within a finite proper time. In the matter-dominated cosmology, this happens only if the charge of the particle is sufficientlylarge; for smaller charges the particle first loses some of its mass, but then regains it all eventually. PACS numbers: 04.25.-g, 95.30.Cq, 98.80.-k


Classical and Quantum Gravity | 2012

Mechanics of extended masses in general relativity

Abraham I. Harte

The ‘external’ or ‘bulk’ motion of extended bodies is studied in general relativity. Compact material objects of essentially arbitrary shape, spin, internal composition and velocity are allowed as long as there is no direct (non-gravitational) contact with other sources of stress–energy. Physically reasonable linear and angular momenta are proposed for such bodies and exact equations describing their evolution are derived. Changes in the momenta depend on a certain ‘effective metric’ that is closely related to a non-perturbative generalization of the Detweiler–Whiting R-field originally introduced in the self-force literature. If the effective metric inside a self-gravitating body can be adequately approximated by an appropriate power series, the instantaneous gravitational force and torque exerted on it is shown to be identical to the force and torque exerted on an appropriate test body moving in the effective metric. This result holds to all multipole orders. The only instantaneous effect of a body’s self-field is to finitely renormalize the ‘bare’ multipole moments of its stress–energy tensor. The MiSaTaQuWa expression for the gravitational self-force is recovered as a simple application. A gravitational self-torque is obtained as well. Lastly, it is shown that the effective metric in which objects appear to move is approximately a solution to the vacuum Einstein equation if the physical metric is an approximate solution to Einstein’s equation linearized about a vacuum background.


Classical and Quantum Gravity | 2008

Approximate spacetime symmetries and conservation laws

Abraham I. Harte

A notion of geometric symmetry is introduced that generalizes the classical concepts of Killing fields and other affine collineations. There is a sense in which flows under these new vector fields minimize deformations of the connection near a specified observer. Any exact affine collineations that may exist are special cases. The remaining vector fields can all be interpreted as analogs of Poincare and other well-known symmetries near timelike worldlines. Approximate conservation laws generated by these objects are discussed for both geodesics and extended matter distributions. One example is a generalized Komar integral that may be taken to define the linear and angular momenta of a spacetime volume as seen by a particular observer. This is evaluated explicitly for a gravitational plane wave spacetime.


Classical and Quantum Gravity | 2008

Self-forces from generalized Killing fields

Abraham I. Harte

A non-perturbative formalism is developed that simplifies the understanding of self-forces and self-torques acting on extended scalar charges in curved spacetimes. Laws of motion are locally derived using momenta generated by a set of generalized Killing fields. Self-interactions that may be interpreted as arising from the details of a bodys internal structure are shown to have very simple geometric and physical interpretations. Certain modifications to the usual definition for a center-of-mass are identified that significantly simplify the motions of charges with strong self-fields. A derivation is also provided for a generalized form of the Detweiler-Whiting axiom that pointlike charges should react only to the so-called regular component of their self-field. Standard results are shown to be recovered for sufficiently small charge distributions.


Classical and Quantum Gravity | 2009

Electromagnetic self-forces and generalized Killing fields

Abraham I. Harte

Building upon previous results in scalar field theory, a formalism is developed that uses generalized Killing fields to understand the behavior of extended charges interacting with their own electromagnetic fields. New notions of effective linear and angular momenta are identified, and their evolution equations are derived exactly in arbitrary (but fixed) curved spacetimes. A slightly modified form of the Detweiler–Whiting axiom that a charges motion should only be influenced by the so-called regular component of its self-field is shown to follow very easily. It is exact in some interesting cases and approximate in most others. Explicit equations describing the center-of-mass motion, spin angular momentum and changes in mass of a small charge are also derived in a particular limit. The chosen approximations—although standard—incorporate dipole and spin forces that do not appear in the traditional Abraham–Lorentz–Dirac or Dewitt–Brehme equations. They have, however, been previously identified in the test body limit.


arXiv: General Relativity and Quantum Cosmology | 2014

Motion in classical field theories and the foundations of the self-force problem

Abraham I. Harte

This article serves as a pedagogical introduction to the problem of motion in classical field theories. The primary focus is on self-interaction: How does an object’s own field affect its motion? General laws governing the self-force and self-torque are derived using simple, non-perturbative arguments. The relevant concepts are developed gradually by considering motion in a series of increasingly complicated theories. Newtonian gravity is discussed first, then Klein-Gordon theory, electromagnetism, and finally general relativity. Linear and angular momenta as well as centers of mass are defined in each of these cases. Multipole expansions for the force and torque are derived to all orders for arbitrarily self-interacting extended objects. These expansions are found to be structurally identical to the laws of motion satisfied by extended test bodies, except that all relevant fields are replaced by effective versions which exclude the self-fields in a particular sense. Regularization methods traditionally associated with self-interacting point particles arise as straightforward perturbative limits of these (more fundamental) results. Additionally, generic mechanisms are discussed which dynamically shift—i.e., renormalize—the apparent multipole moments associated with self-interacting extended bodies. Although this is primarily a synthesis of earlier work, several new results and interpretations are included as well.


Classical and Quantum Gravity | 2013

Strong lensing, plane gravitational waves and transient flashes

Abraham I. Harte

Plane-symmetric gravitational waves are considered as gravitational lenses. Numbers of images, frequency shifts, mutual angles, and image distortion parameters are computed exactly in essentially all non-singular plane wave spacetimes. For a fixed observation event in a particular plane wave spacetime, the number of regular images is found to be the same for almost every pointlike source. This number can be any positive integer, including infinity. Wavepackets of finite width are discussed in detail as well as waves which maintain a constant amplitude for all time. Short wavepackets are found to generically produce up to two images of each source which appear (separately) only some time after the wave has passed. They are initially infinitely bright, infinitely blueshifted images of the infinitely distant past. Later, these images become dim and acquire a rapidly-increasing redshift. For sufficiently weak wavepackets, one such ‘flash’ almost always exists. The appearance of a second flash requires that the Ricci tensor inside the wave exceed a certain threshold. This might occur if a gravitational plane wave is sourced by, e.g., a sufficiently strong electromagnetic plane wave.


Physical Review D | 2016

Generating exact solutions to Einstein's equation using linearized approximations

Abraham I. Harte; Justin Vines

We show that certain solutions to the linearized Einstein equation can---by the application of a particular type of linearized gauge transformation---be straightforwardly transformed into solutions of the exact Einstein equation. In cases with nontrivial matter content, the exact stress-energy tensor of the transformed metric has the same eigenvalues and eigenvectors as the linearized stress-energy tensor of the initial approximation. When our gauge exists, the tensorial structure of transformed metric perturbations identically eliminates all nonlinearities in Einsteins equation. As examples, we derive the exact Kerr and gravitational plane wave metrics from standard harmonic-gauge approximations.

Collaboration


Dive into the Abraham I. Harte's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter Taylor

University College Dublin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Luciano Rezzolla

Frankfurt Institute for Advanced Studies

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge