Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Abram Gabriel is active.

Publication


Featured researches published by Abram Gabriel.


Molecular Cell | 1999

Patching Broken Chromosomes with Extranuclear Cellular DNA

Xin Yu; Abram Gabriel

Chromosomal double-strand breaks (DSBs) can be repaired by either homology-dependent or homology-independent pathways. Using a novel intron-based genetic assay to identify rare homology-independent DNA rearrangements associated with repair of a chromosomal DSB in S. cerevisiae, we observed that approximately 20% of rearrangements involved endogenous DNA insertions at the break site. We have analyzed 37 inserts and find they fall into two distinct classes: Ty1 cDNA intermediates varying in length from 140 bp to 3.4 kb and short mitochondrial DNA fragments ranging in size from 33 bp to 219 bp. Several inserts consist of multiple noncontiguous mitochondrial DNA segments. These results demonstrate an ongoing mechanism for genome evolution through acquisition of organellar and mobile DNAs at DSB sites.


Journal of Virology | 2001

A Ty1 Reverse Transcriptase Active-Site Aspartate Mutation Blocks Transposition but Not Polymerization

Ozcan Uzun; Abram Gabriel

ABSTRACT Reverse transcriptases (RTs) are found in a wide variety of mobile genetic elements including viruses, retrotransposons, and infectious organellar introns. An invariant triad of aspartates is thought to be required for the catalytic function of RTs. We generated RT mutants in the yeast retrotransposon Ty1, changing each of these active-site aspartates to asparagine or glutamate. All but one of the mutants lacked detectable polymerase activity. The novel exception, D211N, retained near wild-type in vitro polymerase activity within virus-like particles but failed to carry out in vivo transposition. For this mutant, minus-strand synthesis is impaired and formation of the plus-strand strong-stop intermediate is eliminated. Intragenic second-site suppressor mutations of the transposition defect map to the RNase H domain of the enzyme. Our results demonstrate that one of the three active-site aspartates in a retrotransposon RT is not catalytically critical. This implies a basic difference in the polymerase active-site geometry of Ty1 and human immunodeficiency virus RT and shows that subtle mutations in one domain can cause dramatic functional effects on a distant domain of the same enzyme.


Molecular and Cellular Biology | 1998

Replication Errors during In Vivo Ty1 Transposition Are Linked to Heterogeneous RNase H Cleavage Sites

Emilie H. Mules; Ozcan Uzun; Abram Gabriel

ABSTRACT We previously identified a mutational hotspot upstream of the Ty1 U5-primer binding site (PBS) border and proposed a novel mechanism to account for this phenomenon during Ty1 replication. In this report, we verify key points of our model and show that in vivo RNase H cleavage of Ty1 RNA during minus-strand strong-stop synthesis creates heterogeneous 5′ RNA ends. The preferred cleavage sites closest to the PBS are 6 and 3 bases upstream of the U5-PBS border. Minus-strand cDNA synthesis terminates at multiple sites determined by RNase H cleavage, and DNA intermediates frequently contain 3′-terminal sequence changes at or near their template ends. These data indicate that nontemplated terminal base addition during reverse transcription is a real in vivo phenomenon and suggest that this mechanism is a major source of sequence variability among retrotransposed genetic elements.


Annals of the New York Academy of Sciences | 1999

Fidelity of Retrotransposon Replication

Abram Gabriel; Emilie H. Mules

ABSTRACT: Ty1, the genetically tractable retrotransposable element found in the yeast Saccharomyces cerevisiae, closely resembles vertebrate retroviruses both in structure and in mechanism of replication. By direct sequence analysis, we examined the rate and spectrum of new mutations appearing during a single cycle of Ty1 replication. The rate of new mutations was comparable to those seen for replicating retroviruses. All observed changes were base substitutions, and their location suggested that template ends may be hot spots for generating these mutations. To test this, we developed methods to examine, at the nucleotide level, the end structure of the expected Ty1 replication intermediates. Our results demonstrate that Ty1 reverse transcriptase can add terminal non‐templated bases in vivo during each step in replication. Furthermore, Ty1 RNAse H creates multiple template ends by imprecisely cleaving RNA. This expands the range of sites of subsequent non‐templated base addition. Finally, on reaching template ends, Ty1 reverse transcriptase can strand transfer to inappropriate templates. Taken together, these mutagenic mechanisms may influence the evolution of particular regions of the Ty1 genome and serve as a mechanism to regulate the overall level of Ty1 transposition in its host cell.


PLOS Genetics | 2008

Proofreading activity of DNA polymerase Pol2 mediates 3'-end processing during nonhomologous end joining in yeast.

Shun-Fu Tseng; Abram Gabriel; Shu-Chun Teng

Genotoxic agents that cause double-strand breaks (DSBs) often generate damage at the break termini. Processing enzymes, including nucleases and polymerases, must remove damaged bases and/or add new bases before completion of repair. Artemis is a nuclease involved in mammalian nonhomologous end joining (NHEJ), but in Saccharomyces cerevisiae the nucleases and polymerases involved in NHEJ pathways are poorly understood. Only Pol4 has been shown to fill the gap that may form by imprecise pairing of overhanging 3′ DNA ends. We previously developed a chromosomal DSB assay in yeast to study factors involved in NHEJ. Here, we use this system to examine DNA polymerases required for NHEJ in yeast. We demonstrate that Pol2 is another major DNA polymerase involved in imprecise end joining. Pol1 modulates both imprecise end joining and more complex chromosomal rearrangements, and Pol3 is primarily involved in NHEJ-mediated chromosomal rearrangements. While Pol4 is the major polymerase to fill the gap that may form by imprecise pairing of overhanging 3′ DNA ends, Pol2 is important for the recession of 3′ flaps that can form during imprecise pairing. Indeed, a mutation in the 3′-5′ exonuclease domain of Pol2 dramatically reduces the frequency of end joins formed with initial 3′ flaps. Thus, Pol2 performs a key 3′ end-processing step in NHEJ.


Journal of Biological Chemistry | 2003

Extension and Cleavage of the Polypurine Tract Plus-strand Primer by Ty1 Reverse Transcriptase

François-Xavier Wilhelm; Marcelle Wilhelm; Abram Gabriel

Using hybrid RNA/DNA substrates containing the polypurine tract (PPT) plus-strand primer, we have examined the interaction between the Ty1 reverse transcriptase (RT) and the plus-strand initiation complex. We show here that, although the PPT sequence is relatively resistant to RNase H cleavage, it can be cleaved internally by the polymerase-independent RNase H activity of Ty1 RT. Alternatively, this PPT can be used to initiate plus-strand DNA synthesis. We demonstrate that cleavage at the PPT/DNA junction occurs only after at least 9 nucleotides are extended. Cleavage leaves a nick between the RNA primer and the nascent plus-strand DNA. We show that Ty1 RT has a strand displacement activity beyond a gap but that the PPT is not efficiently re-utilized in vitro for another round of DNA synthesis after a first plus-strand DNA has been synthesized and cleaved at the PPT/U3 junction.


PLOS ONE | 2008

Kinetic Pathway of Pyrophosphorolysis by a Retrotransposon Reverse Transcriptase

Manjula Pandey; Smita S. Patel; Abram Gabriel

DNA and RNA polymerases use a common phosphoryl transfer mechanism for base addition that requires two or three acidic amino acid residues at their active sites. We previously showed, for the reverse transcriptase (RT) encoded by the yeast retrotransposon Ty1, that one of the three conserved active site aspartates (D211) can be substituted by asparagine and still retain in vitro polymerase activity, although in vivo transposition is lost. Transposition is partially restored by second site suppressor mutations in the RNAse H domain. The novel properties of this amino acid substitution led us to express the WT and D211N mutant enzymes, and study their pre-steady state kinetic parameters. We found that the kpol was reduced by a factor of 223 in the mutant, although the Kd for nucleotide binding was unaltered. Further, the mutant enzyme had a marked preference for Mn2+ over Mg2+. To better understand the functions of this residue within the Ty1 RT active site, we have now examined the in vitro properties of WT and D211N mutant Ty1 RTs in carrying out pyrophosphorolysis, the reverse reaction to polymerization, where pyrophosphate is the substrate and dNTPs are the product. We find that pyrophosphorolysis is efficient only when the base-paired primer template region is >14 bases, and that activity increases when the primer end is blunt-ended or recessed by only a few bases. Using pre-steady state kinetic analysis, we find that the rate of pyrophosphorolysis (kpyro) in the D211N mutant is nearly 320 fold lower than the WT enzyme, and that the mutant enzyme has an ∼170 fold lower apparent Kd for pyrophosphate. These findings indicate that subtle substrate differences can strongly affect the enzymes ability to properly position the primer-end to carry out pyrophosphorolysis. Further the kinetic data suggests that the D211 residue has a role in pyrophosphate binding and release, which could affect polymerase translocation, and help explain the D211N mutants transposition defect.


Genome Research | 1998

Transposable Elements and Genome Organization: A Comprehensive Survey of Retrotransposons Revealed by the Complete Saccharomyces cerevisiae Genome Sequence

Jin M. Kim; Swathi Vanguri; Jef D. Boeke; Abram Gabriel; Daniel F. Voytas


Genome Research | 2004

Widespread RNA Editing of Embedded Alu Elements in the Human Transcriptome

Dennis D.Y. Kim; Thomas T.Y. Kim; Thomas J. Walsh; Yoshifumi Kobayashi; Tara C. Matise; Steven Buyske; Abram Gabriel


Genetics | 2003

Ku-dependent and Ku-independent end-joining pathways lead to chromosomal rearrangements during double-strand break repair in Saccharomyces cerevisiae.

Xin Yu; Abram Gabriel

Collaboration


Dive into the Abram Gabriel's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge