Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Abul Kalam Najmi is active.

Publication


Featured researches published by Abul Kalam Najmi.


Asian pacific Journal of Tropical Biomedicine | 2013

A review on therapeutic potential of Nigella sativa: A miracle herb

Aftab Ahmad; Asif Husain; Mohd Mujeeb; Shah Alam Khan; Abul Kalam Najmi; Nasir Ali Siddique; Zoheir A. Damanhouri; Firoz Anwar

Nigella sativa (N. sativa) (Family Ranunculaceae) is a widely used medicinal plant throughout the world. It is very popular in various traditional systems of medicine like Unani and Tibb, Ayurveda and Siddha. Seeds and oil have a long history of folklore usage in various systems of medicines and food. The seeds of N. sativa have been widely used in the treatment of different diseases and ailments. In Islamic literature, it is considered as one of the greatest forms of healing medicine. It has been recommended for using on regular basis in Tibb-e-Nabwi (Prophetic Medicine). It has been widely used as antihypertensive, liver tonics, diuretics, digestive, anti-diarrheal, appetite stimulant, analgesics, anti-bacterial and in skin disorders. Extensive studies on N. sativa have been carried out by various researchers and a wide spectrum of its pharmacological actions have been explored which may include antidiabetic, anticancer, immunomodulator, analgesic, antimicrobial, anti-inflammatory, spasmolytic, bronchodilator, hepato-protective, renal protective, gastro-protective, antioxidant properties, etc. Due to its miraculous power of healing, N. sativa has got the place among the top ranked evidence based herbal medicines. This is also revealed that most of the therapeutic properties of this plant are due to the presence of thymoquinone which is major bioactive component of the essential oil. The present review is an effort to provide a detailed survey of the literature on scientific researches of pharmacognostical characteristics, chemical composition and pharmacological activities of the seeds of this plant.


Journal of Pharmacy and Bioallied Sciences | 2012

A pharmacological appraisal of medicinal plants with antidiabetic potential

Vasim Khan; Abul Kalam Najmi; Mohd Akhtar; Mohd. Aqil; Mohd Mujeeb; Krishna Kolappa Pillai

Diabetes mellitus is a complicated metabolic disorder that has gravely troubled the human health and quality of life. Conventional agents are being used to control diabetes along with lifestyle management. However, they are not entirely effective and no one has ever been reported to have fully recovered from diabetes. Numerous medicinal plants have been used for the management of diabetes mellitus in various traditional systems of medicine worldwide as they are a great source of biological constituents and many of them are known to be effective against diabetes. Medicinal plants with antihyperglycemic activities are being more desired, owing to lesser side-effects and low cost. This review focuses on the various plants that have been reported to be effective in diabetes. A record of various medicinal plants with their established antidiabetic and other health benefits has been reported. These include Allium sativa, Eugenia jambolana, Panax ginseng, Gymnema sylvestre, Momrodica charantia, Ocimum sanctum, Phyllanthus amarus, Pterocarpus marsupium, Trigonella foenum graecum and Tinospora cordifolia. All of them have shown a certain degree of antidiabetic activity by different mechanisms of action.


Pharmacology, Biochemistry and Behavior | 2011

Mitochondrial dysfunction: A crucial event in okadaic acid (ICV) induced memory impairment and apoptotic cell death in rat brain

Pradeep Kumar Kamat; Santoshkumar Tota; Rakesh Shukla; Shakir Ali; Abul Kalam Najmi; Chandishwar Nath

Mitochondrial abnormalities have been identified in a large proportion of neurodegenerative diseases. Recently we have reported that intracerebroventricular (ICV) administration of okadaic acid (OKA) causes memory impairment in rat. However involvement of mitochondrial function in OKA induced memory impairment and neuronal damage has not been determined. OKA (200 ng) was administered by ICV route. After 13th day of OKA administration memory function was evaluated by Morris Water Maze test. Following completion of behavioral studies on 16th day, mitochondrial membrane potential, Ca(2+) and reactive oxygen species were evaluated in mitochondrial preparation of cortex, hippocampus, striatum and cerebellum of rat brain. While ATP, mitochondrial activity, lipid peroxidation and nitrite were investigated in synaptosomal preparation of rat brain areas. The activities and mRNA expression of apoptotic factors, caspase-3 and caspase-9, were studied in rat brain regions. The neuronal damage was also confirmed by histopathological study. OKA treated rats showed memory impairment including increased Ca(2+) and reactive oxygen species and decreased mitochondrial membrane potential, ATP and mitochondrial activity in mitochondrial preparation. There was a significant increase in lipid peroxidation and nitrite in synaptosomal preparations. Preventive treatment daily for 13 days with antidementic drugs, donepezil (5 mg/kg, p.o) and memantine (10 mg/kg, p.o), significantly attenuated OKA induced mitochondrial dysfunction, apoptotic cell death, memory impairment and histological changes. Mitochondrial dysfunction appeared as a key factor in OKA induced memory impairment and apoptotic cell death. This study indicates that clinically used antidementic drugs are effective against OKA induced adverse changes at behavioral, cellular, and histological levels and mitochondrial dysfunction.


Journal of Ethnopharmacology | 2002

Evaluation of hepatoprotective potential of jigrine post-treatment against thioacetamide induced hepatic damage

Aftab Ahmad; K. K. Pillai; Abul Kalam Najmi; Shibli Jameel Ahmad; S.N. Pal; D.K Balani

Jigrine a polypharmaceutical herbal formulation containing aqueous extracts of 14 medicinal plants developed on the principles of unani system of medicine is used for liver ailments. The hepatoprotective potential of jigrine post-treatment at the dose of 0.5 ml/kg per day p.o. for 21 days was evaluated against thiocetamide induced liver damage in rats. Biochemical parameters like AST, ALT in serum and TBARS and glutathione in tissues were estimated to assess liver function. Data on the biochemical parameters revealed hepatoprotective potential of jigrine post-treatment against thioacetamide induced hepatotoxicity in rats. Silymarin used as reference standard also exhibited significant hepatoprotective activity on post-treatment against thioacetamide-induced hepatotoxity in rats. The biochemical observations were supplemented with histopathological examination of rat liver sections.


Psychopharmacology | 2012

Role of central angiotensin receptors in scopolamine-induced impairment in memory, cerebral blood flow, and cholinergic function

Santoshkumar Tota; Kashif Hanif; Pradeep Kumar Kamat; Abul Kalam Najmi; Chandishwar Nath

RationalInhibition of renin–angiotensin system (RAS) improves cognitive functions in hypertensive patients. However, role of AT1 and AT2 receptors in memory impairment due to cholinergic hypofunction is unexplored.ObjectiveThis study investigated the role of AT1 and AT2 receptors in cerebral blood flow (CBF), cholinergic neurotransmission, and cerebral energy metabolism in scopolamine-induced amnesic mice.MethodsScopolamine was given to male Swiss albino mice to induce memory impairment tested in passive avoidance and Morris water maze tests after a weeklong administration of blocker of AT1 receptor, candesartan, and AT2 receptor, PD123, 319. CBF was measured by laser Doppler flowmetry. Biochemical and molecular studies were done in cortex and hippocampus of mice brain.ResultsScopolamine caused memory impairment, reduced CBF, acetylcholine (ACh) level, elevated acetylcholinesterase (AChE) activity, and malondialdehyde (MDA). Administration of vehicle had no significant effect on any parameter in comparison to control. Candesartan prevented scopolamine-induced amnesia, restored CBF and ACh level, and decreased AChE activity and MDA level. In contrast, PD123, 319 was not effective. However, the effect of AT1 receptor blocker on memory, CBF, ACh level, and oxidative stress was blunted by concomitant blockade of AT2 receptor. Angiotensin-converting enzyme (ACE) activity, ATP level, and mRNA expression of AT1, AT2, and ACE remained unaltered.ConclusionThe study suggests that activation of AT1 receptors appears to be involved in the scopolamine-induced amnesia and that AT2 receptors contribute to the beneficial effects of candesartan. Theses finding corroborated the number of clinical studies that RAS inhibition in hypertensive patients could be neuroprotective.


Behavioural Brain Research | 2012

Central angiotensin converting enzyme facilitates memory impairment in intracerebroventricular streptozotocin treated rats

Santoshkumar Tota; Pradeep Kumar Kamat; Gunjan Saxena; Kashif Hanif; Abul Kalam Najmi; Chandishwar Nath

Preclinical and clinical studies indicated involvement of renin angiotensin system (RAS) in memory functions. However, exact role of RAS in cognition is still ambiguous. Our aim was to explore how angiotensin converting enzyme (ACE) modulates memory in experimental model of memory impairment. Memory deficit was induced by intracerebroventricular administration of streptozotocin (STZ, 3mg/kg) in rats. Perindopril, an ACE inhibitor, was given for 21 days and memory function was evaluated by Morris water maze test. Cerebral blood flow (CBF) was measured by laser doppler flowmetry. The biochemical and expression studies were done in cortex and hippocampus of rat brain after the completion of behavioral studies. STZ caused impairment in memory along with significant reduction in CBF, ATP level and elevated oxidative and nitrosative stress. The activity and mRNA expression of acetylcholinesterase (AChE) and ACE were also increased in rat brain regions following STZ administration. However, serum ACE activity remained unaffected. Treatment with perindopril dose dependently improved memory by increasing energy metabolism and CBF. Perindopril also decreased oxidative and nitrosative stress, activity and mRNA expression of AChE and ACE in STZ treated rat. Further, ACE inhibition mitigated STZ induced neurodegeneration as observed in histopathological studies. Moreover, perindopril per se improved memory and CBF, decreased oxidative stress with no effect on AChE activity and expression. However, perindopril per se significantly reduced ACE activity but increased mRNA expression of ACE in rat brain. These results suggest that ACE occupies a pivotal role in STZ induced memory deficit thus implicating central RAS in cognition.


Neuroscience | 2013

OKADAIC ACID-INDUCED TAU PHOSPHORYLATION IN RAT BRAIN: ROLE OF NMDA RECEPTOR

Pradeep Kumar Kamat; Shivika Rai; Supriya Swarnkar; Rakesh Shukla; Shakir Ali; Abul Kalam Najmi; Chandishwar Nath

Okadaic acid (OKA) is a potent inhibitor of protein phosphatases 1/2A (PP2A). Inhibition of PP2A leads to hyperphosphorylation of Tau protein. Hyperphosphorylated Tau protein is present in intraneuronal neurofibrillary tangles a characteristic feature of neuropathology of Alzheimers disease. Intracerebroventricular (ICV) administration of OKA causes neurotoxicity, which is associated with increased intracellular Ca(2+) level, oxidative stress, and mitochondrial dysfunction in the brain areas. The present study explored Tau phosphorylation in OKA-treated rats in relation to memory function, PP2A activity, intracellular Ca(2+), glycogen synthase kinase-3β (GSK-3β) and N-methyl-d-aspartate (NMDA) receptor after 13days of OKA (200ng, ICV) administration in rats, memory was found impaired in the water maze test. OKA-induced memory-impaired rats showed increased mRNA and protein expression of Tau, Ca(2+)/calmodulin-dependent protein kinase II (CaMKII), Calpain and GSK3β in the hippocampus and cerebral cortex. On the other hand, mRNA expression and activity of PP2A was reduced in these brain areas. OKA treatment also, resulted in decrease in mRNA expression of C and N terminals of Tau. Treatment with NMDA antagonist, MK801 (0.05mg/kg, i.p.) for 13days significantly prevented OKA-induced changes in the expression of PP2A, Tau, GSK3β, CaMKII and Calpain. Further, daily administration of anticholinergic drug, donepezil (5mg/kg, p.o.), and the NMDA receptor antagonist, memantine (10mg/kg, p.o.) initiated after OKA administration for 13days significantly attenuated OKA-induced variation in Tau, Tau-C terminal, Tau-N terminal CaMKII, Calpain, PP2A and GSK3β. These results infer that NMDA antagonist MK801 and memantine are effective against OKA-induced neurotoxicity. Therefore, the present study clearly indicates the involvement of NMDA receptor in OKA (ICV)-induced Tau hyperphosphorylation.


Behavioural Brain Research | 2012

Inhibition of central angiotensin converting enzyme ameliorates scopolamine induced memory impairment in mice: Role of cholinergic neurotransmission, cerebral blood flow and brain energy metabolism☆

Santoshkumar Tota; Chandishwar Nath; Abul Kalam Najmi; Rakesh Shukla; Kashif Hanif

Evidences indicate that inhibition of central Renin angiotensin system (RAS) ameliorates memory impairment in animals and humans. Earlier we have reported involvement of central angiotensin converting enzyme (ACE) in streptozotocin induced neurodegeneration and memory impairment. The present study investigated the role of central ACE in cholinergic neurotransmission, brain energy metabolism and cerebral blood flow (CBF) in model of memory impairment induced by injection of scopolamine in mice. Perindopril (0.05 and 0.1 mg/kg, PO) was given orally for one week before administration of scopolamine (3mg/kg, IP). Then, memory function was evaluated by Morris water maze and passive avoidance tests. CBF was measured by laser Doppler flowmetry. Biochemical and molecular parameters were estimated after the completion of behavioral studies. Scopolamine caused impairment in memory which was associated with reduced CBF, acetylcholine (ACh) level and elevated acetylcholinesterase (AChE) activity and malondialdehyde (MDA) level. Perindopril ameliorated scopolamine induced amnesia in both the behavioral paradigms. Further, perindopril prevented elevation of AChE and MDA level in mice brain. There was a significant increase in CBF and ACh level in perindopril treated mice. However, scopolamine had no significant effect on ATP level and mRNA expression of angiotensin receptors and ACE in cortex and hippocampus. But, perindopril significantly decreased ACE activity in brain without affecting its mRNA expression. The study clearly showed the interaction between ACE and cholinergic neurotransmission and beneficial effect of perindopril can be attributed to improvement in central cholinergic neurotransmission and CBF.


Drug Delivery | 2004

Transdermal drug delivery systems of a beta blocker: design, in vitro, and in vivo characterization.

Mohd. Aqil; Yasmin Sultana; Asgar Ali; Kiran Dubey; Abul Kalam Najmi; Krishna Kolappa Pillai

The matrix type transdermal drug delivery systems (TDDS) of metoprolol were prepared by film casting technique using a fabricated stainless steel film casting apparatus and characterized in vitro by drug release, skin permeation, skin irritation, and in vivo pharmacodynamic and stability studies. Four formulations were prepared that differed in the ratio of matrix forming polymers. Formulations M-1, M-2, M-3, and M-4 were composed of Eudragit RL-100 and polyvinyl acetate with the following ratios: 2:8, 4:6, 6:4, and 8:2, respectively. All the four formulations carried 10% (w/w) of metoprolol tartrate, 5% (w/w) of dibutylphthalate, and 5% (w/w) of (±) menthol in dichloromethane:isopropyl alcohol (80:20 v/v). Cumulative amount of drug released in 48 hr from the four formulations was 79.16%, 81.17%, 85.98%, and 95.04%. The corresponding values for cumulative amount of drug permeated for the said formulations were 59.72%, 66.52%, 77.36%, and 90.38%. On the basis of in vitro drug release and skin permeation performance, formulation M-4 was found to be better than the other three formulations and it was selected as the optimized formulation. The formulation appeared to be stable when stored at 40°C and 75% RH with negligible degradation of the drug. The TDDS was found to be free of any skin irritation as suggested by skin irritation score of 1.16 (<2.00) under Draize score test. Statistically significant reduction in mean blood pressure (p <. 01) was achieved in methyl prednisolone–induced hypertensive rats on treatment with the TDDS.


Journal of the Renin-Angiotensin-Aldosterone System | 2013

Aliskiren alleviates doxorubicin-induced nephrotoxicity by inhibiting oxidative stress and podocyte injury

Azhar Rashikh; Krishna Kolappa Pillai; Shibli Jameel Ahmad; Mohammad Akhtar; Abul Kalam Najmi

Introduction: Doxorubicin (DXR) is one of the most effective and widely used anthracycline antibiotics. However, its clinical application is hampered by toxic effects in many organs. Nephrotoxicity is one of the major side effects of anthracycline antibiotics. This study was designed to investigate the possible protective effects of aliskiren (a direct renin inhibitor) in DXR-induced nephrotoxicity in rats. Materials and methods: Wistar albino rats were intraperitoneally (ip) injected with DXR and renin activity, albumin, total protein, urea, creatinine levels in plasma and ultrastructural changes in podocytes were assessed. Results: Rats subjected to DXR administration had significant (p<0.01) increases in systolic blood pressure, plasma renin activity, plasma concentration of urea, creatinine and tissue malondialdehyde and significant (p<0.01) reductions in plasma concentrations of albumin, total protein and antioxidant defense (reduced glutathione (GSH), superoxide dismutase (SOD) and catalase (CAT)) in renal tissues. Furthermore, DXR-induced nephrotoxicity has also been characterized by broadening of podocyte foot processes, enlargement of glomerular basement membrane width and reduction in slit pore diameter. The above effects of DXR were significantly (p<0.01) prevented by aliskiren treatment. Conclusions: These findings revealed that the blockade of renin activity by aliskiren is a promising approach in the treatment of DXR-induced nephrotoxicity.

Collaboration


Dive into the Abul Kalam Najmi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge