Achill Schürmann
University of Rostock
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Achill Schürmann.
Experimental Mathematics | 2009
Brandon M. Ballinger; Grigoriy Blekherman; Henry Cohn; Noah Giansiracusa; Elizabeth Kelly; Achill Schürmann
In this paper we report on massive computer experiments aimed at finding spherical point configurations that minimize potential energy. We present experimental evidence for two new universal optima (consisting of 40 points in 10 dimensions and 64 points in 14 dimensions), as well as evidence that there are no others with at most 64 points. We also describe several other new polytopes, and we present new geometrical descriptions of some of the known universal optima.
Mathematics of Computation | 2009
Mathieu Dutour Sikirić; Achill Schürmann; Frank Vallentin
In this paper we are concerned with finding the vertices of the Voronoi cell of a Euclidean lattice. Given a basis of a lattice, we prove that computing the number of vertices is a #P-hard problem. On the other hand we describe an algorithm for this problem which is especially suited for low dimensional (say dimensions at most 12) and for highly-symmetric lattices. We use our implementation, which drastically outperforms those of current computer algebra systems, to find the vertices of Voronoi cells and quantizer constants of some prominent lattices.
Discrete and Computational Geometry | 2006
Achill Schürmann; Frank Vallentin
AbstractWe describe algorithms which address two classical problems in lattice geometry: the lattice covering and the simultaneous lattice packing-covering problem. Theoretically our algorithms solve the two problems in any fixed dimension d in the sense that they approximate optimal covering lattices and optimal packing-covering lattices within any desired accuracy. Both algorithms involve semidefinite programming and are based on Voronois reduction theory for positive definite quadratic forms, which describes all possible Delone triangulations of ℤd. In practice, our implementations reproduce known results in dimensions d ≤ 5 and in particular solve the two problems in these dimensions. For d = 6 our computations produce new best known covering as well as packing-covering lattices, which are closely related to the lattice E*6. For d = 7,8 our approach leads to new best known covering lattices. Although we use numerical methods, we made some effort to transform numerical evidences into rigorous proofs. We provide rigorous error bounds and prove that some of the new lattices are locally optimal.
Physical Review E | 2009
Henry Cohn; Abhinav Kumar; Achill Schürmann
We study dimensional trends in ground states for soft-matter systems. Specifically, using a high-dimensional version of Parrinello-Rahman dynamics, we investigate the behavior of the Gaussian core model in up to eight dimensions. The results include unexpected geometric structures, with surprising anisotropy as well as formal duality relations. These duality relations suggest that the Gaussian core model possesses unexplored symmetries, and they have implications for a broad range of soft-core potentials.
Social Choice and Welfare | 2013
Achill Schürmann
A large amount of literature in social choice theory deals with quantifying the probability of certain election outcomes. One way of computing the probability of a specific voting situation under the Impartial Anonymous Culture assumption is via counting integral points in polyhedra. Here, Ehrhart theory can help, but unfortunately the dimension and complexity of the involved polyhedra grows rapidly with the number of candidates. However, if we exploit available polyhedral symmetries, some computations become possible that previously were infeasible. We show this in three well known examples: Condorcet’s paradox, Condorcet efficiency of plurality voting and in Plurality voting vs Plurality Runoff.A large amount of literature in social choice theory deals with quantifying the probability of certain election outcomes. One way of computing the probability of a specific voting situation under the Impartial Anonymous Culture assumption is via counting integral points in polyhedra. Here, Ehrhart theory can help, but unfortunately the dimension and complexity of the involved polyhedra grows rapidly with the number of candidates. However, if we exploit available polyhedral symmetries, some computations become possible that previously were infeasible. We show this in three well known examples: Condorcet’s paradox, Condorcet efficiency of plurality voting and in Plurality voting vs Plurality Runoff.
Lms Journal of Computation and Mathematics | 2014
David Bremner; Mathieu Dutour Sikirić; Dmitrii V. Pasechnik; Thomas Rehn; Achill Schürmann
Knowing the symmetries of a polyhedron can be very useful for the analysis of its structure as well as for practical polyhedral computations. In this note, we study symmetry groups preserving the linear, projective and combinatorial structure of a polyhedron. In each case we give algorithmic methods to compute the corresponding group and discuss some practical experiences. For practical purposes the linear symmetry group is the most important, as its computation can be directly translated into a graph automorphism problem. We indicate how to compute integral subgroups of the linear symmetry group that are used, for instance, in integer linear programming.
Duke Mathematical Journal | 2008
Mathieu Dutour Sikirić; Achill Schürmann; Frank Vallentin
htmlabstractWe consider Voronois reduction theory of positive definite quadratic forms which is based on Delone subdivision. We extend it to forms and Delone subdivisions having a prescribed symmetry group. Even more general, the theory is developed for forms which are restricted to a linear subspace in the space of quadratic forms. We apply the new theory to complete the classification of totally real thin algebraic number fields which was recently initiated by Bayer-Fluckiger and Nebe. Moreover, we apply it to construct new best known sphere coverings in dimensions 9,..., 15.
International Mathematics Research Notices | 2012
Renaud Coulangeon; Achill Schürmann
We study energy minimization for pair potentials among periodic sets in Euclidean spaces. We derive some sufficient conditions under which a point lattice locally minimizes the energy associated to a large class of potential functions. This allows in particular to prove a local version of Cohn and Kumars conjecture that
International Journal of Number Theory | 2012
Jacques Martinet; Achill Schürmann
\mathsf{A}_2
Advances in Mathematics | 2010
Achill Schürmann
,