Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Achim Aigner is active.

Publication


Featured researches published by Achim Aigner.


Oncogene | 2012

The proto-oncogene Pim-1 is a target of miR-33a

Maren Thomas; Kerstin Lange-Grünweller; Ulrike Weirauch; D Gutsch; Achim Aigner; Arnold Grünweller; Roland K. Hartmann

The constitutively active serine/threonine kinase Pim-1 is upregulated in different cancer types, mainly based on the action of several interleukines and growth factors at the transcriptional level. So far, a regulation of oncogenic Pim-1 by microRNAs (miRNAs) has not been reported. Here, we newly establish miR-33a as a miRNA with potential tumor suppressor activity, acting through inhibition of Pim-1. A screen for miRNA expression in K562 lymphoma, LS174T colon carcinoma and several other cell lines revealed generally low endogenous miR-33a levels relative to other miRNAs. Transfection of K562 and LS174T cells with a miR-33a mimic reduced Pim-1 levels substantially. In contrast, the cell-cycle regulator cyclin-dependent kinase 6 predicted to be a conserved miR-33a target, was not downregulated by the miR-33a mimic. Seed mutagenesis of the Pim-1 3′-untranslated region in a luciferase reporter construct and in a Pim-1 cDNA expressed in Pim-1-deficient Skov-3 cells demonstrated specific and direct downregulation of Pim-1 by the miR-33a mimic. The persistence of this effect was comparable to that of a small interfering RNA-mediated knockdown of Pim-1, resulting in decelerated cell proliferation. In conclusion, we demonstrate the potential of miR-33a to act as a tumor suppressor miRNA, which suggests miR-33a replacement therapy through delivery of miR mimics as a novel therapeutic strategy.


Nature Cell Biology | 2014

Increased microtubule assembly rates influence chromosomal instability in colorectal cancer cells

Norman Ertych; Ailine Stolz; Albrecht Stenzinger; Wilko Weichert; Silke Kaulfuß; Peter Burfeind; Achim Aigner; Linda Wordeman; Holger Bastians

Chromosomal instability (CIN) is defined as the perpetual missegregation of whole chromosomes during mitosis and represents a hallmark of human cancer. However, the mechanisms influencing CIN and its consequences on tumour growth are largely unknown. We identified an increase in microtubule plus-end assembly rates as a mechanism influencing CIN in colorectal cancer cells. This phenotype is induced by overexpression of the oncogene AURKA or by loss of the tumour suppressor gene CHK2, a genetic constitution found in 73% of human colorectal cancers. Increased microtubule assembly rates are associated with transient abnormalities in mitotic spindle geometry promoting the generation of lagging chromosomes and influencing CIN. Reconstitution of proper microtubule assembly rates by chemical or genetic means suppresses CIN and thereby, unexpectedly, accelerates tumour growth in vitro and in vivo. Thus, we identify a fundamental mechanism influencing CIN in cancer cells and reveal its adverse consequence on tumour growth.


Acta Biomaterialia | 2014

Storage stability of optimal liposome–polyethylenimine complexes (lipopolyplexes) for DNA or siRNA delivery

Alexander Ewe; Andreas K. Schaper; Sabine Barnert; Rolf Schubert; Achim Temme; Udo Bakowsky; Achim Aigner

The delivery of nucleic acids such as DNA or siRNA still represents a major hurdle, especially with regard to possible therapeutic applications in vivo. Much attention has been focused on the development of non-viral gene delivery vectors, including liposomes or cationic polymers. Among them, polyethylenimines (PEIs) have been widely explored for the delivery of nucleic acids and show promising results. The combination of cationic polymers and liposomes (lipopolyplexes) for gene delivery may further improve their efficacy and biocompatibility, by combining the favourable properties of lipid systems (high stability, efficient cellular uptake, low cytotoxicity) and PEIs (nucleic acid condensation, facilitated endosomal release). In this study, we systematically analyse various conditions for the preparation of liposome-polyethylenimine-based lipopolyplexes with regard to biological activity (DNA transfection efficacy, siRNA knockdown efficacy) and physicochemical properties (size, zeta potential, stability). This includes the exploration of lipopolyplex compositions containing different liposomes and different relevant branched or linear low-molecular-weight PEIs. We establish optimal parameters for lipopolyplex generation, based on various PEIs, N/P ratios, lipids, lipid/PEI ratios and preparation conditions. Importantly, we also demonstrate that certain lipopolyplexes retain their biological activity and physicochemical integrity upon prolonged storage, even at 37°C and/or in the presence of serum, thus providing formulations with considerably higher stability as compared to polyplexes. In conclusion, we establish optimal liposome-polyethylenimine lipopolyplexes that allow storage under ambient conditions. This is the basis and an essential prerequisite for novel, promising and easy-to-handle formulations for possible therapeutic applications.


Current Pharmaceutical Design | 2012

MicroRNAs (miRNAs) in colorectal cancer: from aberrant expression towards therapy.

Hannelore Dassow; Achim Aigner

MiRNAs are small noncoding RNA molecules that are often aberrantly over- or underexpressed in tumors, including colorectal cancer (CRC). Due to their capacity to regulate and thus fine-tune the expression of multiple target genes relevant in tumorigenesis,tumor progression, angiogenesis, metastasis and sensitivity towards chemotherapy, they influence various pivotal cellular processes with prognostic and therapeutic relevance in CRC.This review provides a comprehensive overview of miRNAs with established functional relevance in colorectal cancer, their established target genes and the resulting cellular and pathological phenotype(s). Furthermore, approaches towards therapeutic miRNA-based intervention are discussed. Those include viral or non-viral approaches of miRNA replacement therapy in the case of tumor-suppressing miRNAs, and multiple strategies for the inhibition of oncogenic miRNAs. Beyond the analysis of the functional relevance of a given miRNA as target molecule or a miRNA-based drug, several studies in preclinical in vivo models are described that provide the basis for possible future therapeutic intervention in man.


Environment International | 2017

From the exposome to mechanistic understanding of chemical-induced adverse effects

Beate I. Escher; Jörg Hackermüller; Tobias Polte; Stefan Scholz; Achim Aigner; Rolf Altenburger; Alexander Böhme; Stephanie K. Bopp; Werner Brack; Wibke Busch; Marc Chadeau-Hyam; Adrian Covaci; Adolf Eisenträger; James J. Galligan; Natàlia Garcia-Reyero; Thomas Hartung; Michaela Hein; Gunda Herberth; Annika Jahnke; Jos Kleinjans; Nils Klüver; Martin Krauss; M.H. Lamoree; Irina Lehmann; Till Luckenbach; Gary W. Miller; Andrea Müller; David H. Phillips; Thorsten Reemtsma; Ulrike Rolle-Kampczyk

The exposome encompasses an individuals exposure to exogenous chemicals, as well as endogenous chemicals that are produced or altered in response to external stressors. While the exposome concept has been established for human health, its principles can be extended to include broader ecological issues. The assessment of exposure is tightly interlinked with hazard assessment. Here, we explore if mechanistic understanding of the causal links between exposure and adverse effects on human health and the environment can be improved by integrating the exposome approach with the adverse outcome pathway (AOP) concept that structures and organizes the sequence of biological events from an initial molecular interaction of a chemical with a biological target to an adverse outcome. Complementing exposome research with the AOP concept may facilitate a mechanistic understanding of stress-induced adverse effects, examine the relative contributions from various components of the exposome, determine the primary risk drivers in complex mixtures, and promote an integrative assessment of chemical risks for both human and environmental health.


Journal of Controlled Release | 2016

A novel tyrosine-modified low molecular weight polyethylenimine (P10Y) for efficient siRNA delivery in vitro and in vivo

Alexander Ewe; Susanne Przybylski; Jana Burkhardt; Andreas Janke; Dietmar Appelhans; Achim Aigner

The delivery of nucleic acids, particularly of small RNA molecules like siRNAs for the induction of RNA interference (RNAi), still represents a major hurdle with regard to their application in vivo. Possible therapeutic applications thus rely on the development of efficient non-viral gene delivery vectors. While low molecular weight polyethylenimines (PEIs) have been successfully explored, the introduction of chemical modifications offers an avenue towards the development of more efficient vectors. In this paper, we describe the synthesis of a novel tyrosine-modified low-molecular weight polyethylenimine (P10Y) for efficient siRNA complexation and delivery. The comparison with the respective parent PEI reveals that knockdown efficacies are considerably enhanced by the tyrosine modification, as determined in different reporter cell lines, without appreciable cytotoxicity. We furthermore identify optimal conditions for complex preparation as well as for storing or lyophilization of the complexes without loss of biological activity. Beyond reporter cell lines, P10Y/siRNA complexes mediate the efficient knockdown of endogenous target genes and, upon knockdown of the anti-apoptotic oncogene survivin, tumor cell inhibitory effects in different carcinoma cell lines. Pushing the system further towards its therapeutic in vivo application, we demonstrate in mice the delivery of intact siRNAs and distinct biodistribution profiles upon systemic (intravenous or intraperitoneal) injection. No adverse effects (hepatotoxicity, immunostimulation/alterations in immunophenotype, weight loss) are observed. More importantly, profound tumor-inhibitory effects in a melanoma xenograft mouse model are observed upon systemic application of P10Y/siRNA complexes for survivin knockdown, indicating the therapeutic efficacy of P10Y/siRNA complexes. Taken together, we (i) establish tyrosine-modified PEI (P10Y) as efficient platform for siRNA delivery in vitro and in vivo, (ii) identify optimal preparation and storage conditions as well as (iii) physicochemical and biological properties of P10Y complexes, and (iv) demonstrate their applicability as siRNA therapeutic in vivo (v) in the absence of adverse effects.


Biomaterials | 2017

Nanoparticles for radiooncology: Mission, vision, challenges.

Anna Dubrovska; Claudia Peitzsch; Alexander Ewe; Achim Aigner; Samuel Schellenburg; Michael H. Muders; Silke Hampel; Giuseppe Cirillo; Francesca Iemma; Rainer Tietze; Christoph Alexiou; Holger Stephan; Kristof Zarschler; Orazio Vittorio; Maria Kavallaris; Wolfgang J. Parak; Lutz Mädler; Suman Pokhrel

Cancer is one of the leading non-communicable diseases with highest mortality rates worldwide. About half of all cancer patients receive radiation treatment in the course of their disease. However, treatment outcome and curative potential of radiotherapy is often impeded by genetically and/or environmentally driven mechanisms of tumor radioresistance and normal tissue radiotoxicity. While nanomedicine-based tools for imaging, dosimetry and treatment are potential keys to the improvement of therapeutic efficacy and reducing side effects, radiotherapy is an established technique to eradicate the tumor cells. In order to progress the introduction of nanoparticles in radiooncology, due to the highly interdisciplinary nature, expertise in chemistry, radiobiology and translational research is needed. In this report recent insights and promising policies to design nanotechnology-based therapeutics for tumor radiosensitization will be discussed. An attempt is made to cover the entire field from preclinical development to clinical studies. Hence, this report illustrates (1) the radio- and tumor-biological rationales for combining nanostructures with radiotherapy, (2) tumor-site targeting strategies and mechanisms of cellular uptake, (3) biological response hypotheses for new nanomaterials of interest, and (4) challenges to translate the research findings into clinical trials.


Neoplasia | 2015

Sorafenib Sensitizes Glioma Cells to the BH3 Mimetic ABT-737 by Targeting MCL1 in a STAT3-Dependent Manner

Irina Kiprianova; Janina Remy; Nelli Milosch; Isabelle Vanessa Mohrenz; Volker Seifert; Achim Aigner; Donat Kögel

The oncogenic transcription factor signal transducer and activator of transcription 3 (STAT3) is overactivated in malignant glioma and plays a key role in promoting cell survival, thereby increasing the acquired apoptosis resistance of these tumors. Here we investigated the STAT3/myeloid cell leukemia 1 (MCL1) signaling pathway as a target to overcome the resistance of glioma cells to the Bcl-2-inhibiting synthetic BH3 mimetic ABT-737. Stable lentiviral knockdown of MCL1 sensitized LN229 and U87 glioma cells to apoptotic cell death induced by single-agent treatment with ABT-737 which was associated with an early activation of DEVDase activity, cytochrome c release, and nuclear apoptosis. Similar sensitizing effects were observed when ABT-737 treatment was combined with the multikinase inhibitor sorafenib which effectively suppressed levels of phosphorylated STAT3 and MCL1 in MCL1-proficient LN229 and U87 glioma cells. In analogous fashion, these synergistic effects were observed when we combined ABT-737 with the STAT3 inhibitor WP-1066. Lentiviral knockdown of the activating transcription factor 5 combined with subsequent quantitative polymerase chain reaction analysis revealed that sorafenib-dependent suppression of MCL1 occurred at the transcriptional level but did not depend on activating transcription factor 5 which previously had been proposed to be essential for MCL1-dependent glioma cell survival. In contrast, the constitutively active STAT3 mutant STAT3-C was able to significantly enhance MCL1 levels under sorafenib treatment to retain cell survival. Collectively, these data demonstrate that sorafenib targets MCL1 in a STAT3-dependent manner, thereby sensitizing glioma cells to treatment with ABT-737. They also suggest that targeting STAT3 in combination with inducers of the intrinsic pathway of apoptosis may be a promising novel strategy for the treatment of malignant glioma.


International Journal of Molecular Sciences | 2013

Analysis of Transcriptional Regulation of the Human miR-17-92 Cluster; Evidence for Involvement of Pim-1

Maren Thomas; Kerstin Lange-Grünweller; Dorothee Hartmann; Lara Golde; Julia Schlereth; Dennis Streng; Achim Aigner; Arnold Grünweller; Roland K. Hartmann

The human polycistronic miRNA cluster miR-17-92 is frequently overexpressed in hematopoietic malignancies and cancers. Its transcription is in part controlled by an E2F-regulated host gene promoter. An intronic A/T-rich region directly upstream of the miRNA coding region also contributes to cluster expression. Our deletion analysis of the A/T-rich region revealed a strong dependence on c-Myc binding to the functional E3 site. Yet, constructs lacking the 5′-proximal ~1.3 kb or 3′-distal ~0.1 kb of the 1.5 kb A/T-rich region still retained residual specific promoter activity, suggesting multiple transcription start sites (TSS) in this region. Furthermore, the protooncogenic kinase, Pim-1, its phosphorylation target HP1γ and c-Myc colocalize to the E3 region, as inferred from chromatin immunoprecipitation. Analysis of pri-miR-17-92 expression levels in K562 and HeLa cells revealed that silencing of E2F3, c-Myc or Pim-1 negatively affects cluster expression, with a synergistic effect caused by c-Myc/Pim-1 double knockdown in HeLa cells. Thus, we show, for the first time, that the protooncogene Pim-1 is part of the network that regulates transcription of the human miR-17-92 cluster.


Cancer Letters | 2011

Therapeutic targeting of the mitotic spindle checkpoint through nanoparticle-mediated siRNA delivery inhibits tumor growth in vivo

Phillip Kaestner; Achim Aigner; Holger Bastians

The mitotic spindle checkpoint is a key signaling pathway that ensures proper chromosome segregation and was suggested as a novel target for anti-cancer treatment. Here, we explore a nanoparticle-based RNAi approach targeting the key spindle checkpoint gene MAD2 to investigate the suitability of the spindle checkpoint as a therapeutic target in vitro and in vivo. Repression of MAD2 causes severe chromosome missegregation in colon carcinoma cells associated with induction of apoptosis. Systemic administration of siRNA nanoparticles in nude mice results in reduced growth of xenograft tumors suggesting that inhibition of the spindle checkpoint represents a promising new concept for cancer therapy.

Collaboration


Dive into the Achim Aigner's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge