Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Achim D. Gruber is active.

Publication


Featured researches published by Achim D. Gruber.


Nature | 2007

Epithelial-cell-intrinsic IKK-β expression regulates intestinal immune homeostasis

Colby Zaph; Amy E. Troy; Betsy C. Taylor; Lisa D. Berman-Booty; Katherine J. Guild; Yurong Du; Evan A. Yost; Achim D. Gruber; Michael J. May; Florian R. Greten; Lars Eckmann; Michael Karin; David Artis

Intestinal epithelial cells (IECs) provide a primary physical barrier against commensal and pathogenic microorganisms in the gastrointestinal (GI) tract, but the influence of IECs on the development and regulation of immunity to infection is unknown. Here we show that IEC-intrinsic IκB kinase (IKK)-β-dependent gene expression is a critical regulator of responses of dendritic cells and CD4+ T cells in the GI tract. Mice with an IEC-specific deletion of IKK-β show a reduced expression of the epithelial-cell-restricted cytokine thymic stromal lymphopoietin in the intestine and, after infection with the gut-dwelling parasite Trichuris, fail to develop a pathogen-specific CD4+ T helper type 2 (TH2) response and are unable to eradicate infection. Further, these animals show exacerbated production of dendritic-cell-derived interleukin-12/23p40 and tumour necrosis factor-α, increased levels of CD4+ T-cell-derived interferon-γ and interleukin-17, and develop severe intestinal inflammation. Blockade of proinflammatory cytokines during Trichuris infection ablates the requirement for IKK-β in IECs to promote CD4+ TH2 cell-dependent immunity, identifying an essential function for IECs in tissue-specific conditioning of dendritic cells and limiting type 1 cytokine production in the GI tract. These results indicate that the balance of IKK-β-dependent gene expression in the intestinal epithelium is crucial in intestinal immune homeostasis by promoting mucosal immunity and limiting chronic inflammation.


Molecular and Cellular Biology | 2006

Mitogen-Activated Protein Kinase-Activated Protein Kinase 2 Regulates Tumor Necrosis Factor mRNA Stability and Translation Mainly by Altering Tristetraprolin Expression, Stability, and Binding to Adenine/Uridine-Rich Element

Edward Hitti; Tatiana Iakovleva; Matthew Brook; Stefanie Deppenmeier; Achim D. Gruber; Danuta Radzioch; Andrew R. Clark; Perry J. Blackshear; Alexey Kotlyarov; Matthias Gaestel

ABSTRACT The mitogen-activated protein kinase (MAPK) p38/MAPK-activated protein kinase 2 (MK2) signaling pathway plays an important role in the posttranscriptional regulation of tumor necrosis factor (TNF), which is dependent on the adenine/uridine-rich element (ARE) in the 3′ untranslated region of TNF mRNA. After lipopolysaccharide (LPS) stimulation, MK2-deficient macrophages show a 90% reduction in TNF production compared to the wild type. Tristetraprolin (TTP), a protein induced by LPS, binds ARE and destabilizes TNF mRNA. Accordingly, macrophages lacking TTP produce large amounts of TNF. Here, we generated MK2/TTP double knockout mice and show that, after LPS stimulation, bone marrow-derived macrophages produce TNF mRNA and protein levels comparable to those of TTP knockout cells, indicating that in the regulation of TNF biosynthesis TTP is genetically downstream of MK2. In addition, we show that MK2 is essential for the stabilization of TTP mRNA, and phosphorylation by MK2 leads to increased TTP protein stability but reduced ARE affinity. These data suggest that MK2 inhibits the mRNA destabilizing activity of TTP and, in parallel, codegradation of TTP together, with the target mRNA resulting in increased cellular levels of TTP.


Journal of Experimental Medicine | 2004

T cell-specific inactivation of the interleukin 10 gene in mice results in enhanced T cell responses but normal innate responses to lipopolysaccharide or skin irritation.

Axel Roers; Lisa Siewe; Elke Strittmatter; Martina Deckert; Dirk Schlüter; Werner Stenzel; Achim D. Gruber; Thomas Krieg; Klaus Rajewsky; Werner Müller

Interleukin (IL)-10 is a regulator of inflammatory responses and is secreted by a variety of different cell types including T cells. T regulatory cells have been shown to suppress immune responses by IL-10–dependent, but also IL-10–independent, mechanisms. Herein, we address the role of T cell–derived IL-10 in mice with an inactivation of the IL-10 gene restricted to T cells generated by Cre/loxP-mediated targeting of the IL-10 gene. Splenocytes from this T cell–specific mutant secrete increased amounts of proinflammatory cytokines after activation in vitro compared with show enhanced contact hypersensitivity reactions, and succumb to severe immunopathology upon infection with Toxoplasma gondii. Despite intact IL-10 genes in other cell types, the dysregulation of T cell responses observed in the T cell–specific IL-10 mutant closely resembles the phenotype in complete IL-10 deficiency. However, in contrast to complete IL-10 deficiency, sensitivity to endotoxic shock and irritant responses of the skin are not enhanced in the T cell–specific IL-10 mutant. Our data highlight the importance of T cell–derived IL-10 in the regulation of T cell responses and demonstrate that endotoxic shock and the irritant response of the skin are controlled by IL-10 from other cell types.


Journal of Biology | 2004

The phosphatidylserine receptor has essential functions during embryogenesis but not in apoptotic cell removal

Jens Böse; Achim D. Gruber; Laura Helming; Stefanie Schiebe; Ivonne Wegener; Martin Hafner; Marianne Beales; Frank Köntgen; Andreas Lengeling

Background Phagocytosis of apoptotic cells is fundamental to animal development, immune function and cellular homeostasis. The phosphatidylserine receptor (Ptdsr) on phagocytes has been implicated in the recognition and engulfment of apoptotic cells and in anti-inflammatory signaling. To determine the biological function of the phosphatidylserine receptor in vivo, we inactivated the Ptdsr gene in the mouse. Results Ablation of Ptdsr function in mice causes perinatal lethality, growth retardation and a delay in terminal differentiation of the kidney, intestine, liver and lungs during embryogenesis. Moreover, eye development can be severely disturbed, ranging from defects in retinal differentiation to complete unilateral or bilateral absence of eyes. Ptdsr -/- mice with anophthalmia develop novel lesions, with induction of ectopic retinal-pigmented epithelium in nasal cavities. A comprehensive investigation of apoptotic cell clearance in vivo and in vitro demonstrated that engulfment of apoptotic cells was normal in Ptdsr knockout mice, but Ptdsr-deficient macrophages were impaired in pro- and anti-inflammatory cytokine signaling after stimulation with apoptotic cells or with lipopolysaccharide. Conclusion Ptdsr is essential for the development and differentiation of multiple organs during embryogenesis but not for apoptotic cell removal. Ptdsr may thus have a novel, unexpected developmental function as an important differentiation-promoting gene. Moreover, Ptdsr is not required for apoptotic cell clearance by macrophages but seems to be necessary for the regulation of macrophage cytokine responses. These results clearly contradict the current view that the phosphatidylserine receptor primarily functions in apoptotic cell clearance.


Journal of Immunology | 2006

Deletion of TLR3 Alters the Pulmonary Immune Environment and Mucus Production during Respiratory Syncytial Virus Infection

Brian D. Rudd; Jetse J. Smit; Richard A. Flavell; Lena Alexopoulou; Matthew Schaller; Achim D. Gruber; Aaron A. Berlin; Nicholas W. Lukacs

The detection of a viral infection by pattern recognition receptors (PAMPs) is an integral part of antiviral immunity. In these studies we have investigated the role of TLR3, which recognizes dsRNA, in Respiratory Syncytial virus (RSV) infection using B6 background mice with a TLR3 deletion. Although we observed no changes in viral growth, we did find that TLR3−/− mice demonstrated significant increases in mucus production in the airways of RSV-infected mice. The qualitative assessment was observed by examining differentially stained lungs, followed by immunohistochemical staining for gob5, a mucus-associated protein. The histopathologic observations were verified using quantitative gene expression analyses examining gob5 gene expression. Changes in pulmonary mucus production were accompanied by an increase in pulmonary IL-13 as well as IL-5 expression and eosinophils in the airways of TLR3−/− mice. Examining leukocytes in the airway indicated an accumulation of eosinophils in TLR3−/− mice, but not wild-type mice, after RSV infection. Isolated lung draining lymph node cells from TLR3−/− mice produced significant increases in Th2-type cytokines, IL-5, and IL-13, compared with wild-type TLR3+/+ mice only after RSV infection. To demonstrate a causative link, we depleted TLR3−/− mice of IL-13 during RSV infection and found that mucus and gob5 expression in the lungs was attenuated. Together, these studies highlight that although TLR3 may not be required for viral clearance, it is necessary to maintain the proper immune environment in the lung to avoid developing pathologic symptoms of disease.


Proceedings of the National Academy of Sciences of the United States of America | 2005

A vital role of tubulin-tyrosine-ligase for neuronal organization

Christian Erck; Leticia Peris; Annie Andrieux; Claire Meissirel; Achim D. Gruber; Muriel Vernet; Annie Schweitzer; Yasmina Saoudi; Hervé Pointu; Christophe Bosc; Paul Antoine Salin; Didier Job; Juergen Wehland

Tubulin is subject to a special cycle of detyrosination/tyrosination in which the C-terminal tyrosine of α-tubulin is cyclically removed by a carboxypeptidase and readded by a tubulin-tyrosine-ligase (TTL). This tyrosination cycle is conserved in evolution, yet its physiological importance is unknown. Here, we find that TTL suppression in mice causes perinatal death. A minor pool of tyrosinated (Tyr-)tubulin persists in TTL null tissues, being present mainly in dividing TTL null cells where it originates from tubulin synthesis, but it is lacking in postmitotic TTL null cells such as neurons, which is apparently deleterious because early death in TTL null mice is, at least in part, accounted for by a disorganization of neuronal networks, including a disruption of the cortico-thalamic loop. Correlatively, cultured TTL null neurons display morphogenetic anomalies including an accelerated and erratic time course of neurite outgrowth and a premature axonal differentiation. These anomalies may involve a mislocalization of CLIP170, which we find lacking in neurite extensions and growth cones of TTL null neurons. Our results demonstrate a vital role of TTL for neuronal organization and suggest a requirement of Tyr-tubulin for proper control of neurite extensions.


BMC Biology | 2010

THOC5/FMIP, an mRNA export TREX complex protein, is essential for hematopoietic primitive cell survival in vivo.

Annalisa Mancini; Susanne C Niemann-Seyde; Rüdiger Pankow; Omar El Bounkari; Sabine Klebba-Färber; Alexandra Koch; Ewa Jaworska; Elaine Spooncer; Achim D. Gruber; Anthony D. Whetton; Teruko Tamura

BackgroundThe transcription/export complex is evolutionarily conserved from yeast to man and is required for coupled transcription elongation and nuclear export of mRNAs. FMIP(Fms interacting protein) is a member of the THO (suppressors of the transcriptional defects of hpr1delta by overexpression) complex which is a subcomplex of the transcription/export complex. THO complex (THOC) components are not essential for bulk poly (A)+ RNA export in higher eukaryotes, but for the nuclear export of subset of mRNAs, however, their exact role is still unclear.ResultsTo study the role of THOC5/Fms interacting protein in vivo, we generated THOC5/Fms interacting protein knockout mice. Since these mice are embryonic lethal, we then generated interferon inducible conditional THOC5/Fms interacting protein knockout mice. After three poly injections all of the mice died within 14 days. No pathological alterations, however, were observed in liver, kidney or heart. Thus we considered the hematopoietic system and found that seven days after poly injection, the number of blood cells in peripheral blood decreased drastically. Investigation of bone marrow cells showed that these became apoptotic within seven days after poly injection. Committed myeloid progenitor cells and cells with long term reconstituting potential were lost from bone marrow within four days after poly injection. Furthermore, infusion of normal bone marrow cells rescued mice from death induced by loss of THOC5/Fms interacting protein.ConclusionTHOC5/Fms interacting protein is an essential element in the maintenance of hematopoiesis. Furthermore, mechanistically depletion of THOC5/Fms interacting protein causes the down-regulation of its direct interacting partner, THOC1 which may contribute to altered THO complex function and cell death.


Cell | 2007

Extending the Host Range of Listeria monocytogenes by Rational Protein Design

Thomas Wollert; Bastian Pasche; Maike Rochon; Stefanie Deppenmeier; Joop van den Heuvel; Achim D. Gruber; Dirk W. Heinz; Andreas Lengeling; Wolf-Dieter Schubert

In causing disease, pathogens outmaneuver host defenses through a dedicated arsenal of virulence determinants that specifically bind or modify individual host molecules. This dedication limits the intruder to a defined range of hosts. Newly emerging diseases mostly involve existing pathogens whose arsenal has been altered to allow them to infect previously inaccessible hosts. We have emulated this chance occurrence by extending the host range accessible to the human pathogen Listeria monocytogenes by the intestinal route to include the mouse. Analyzing the recognition complex of the listerial invasion protein InlA and its human receptor E-cadherin, we postulated and verified amino acid substitutions in InlA to increase its affinity for E-cadherin. Two single substitutions increase binding affinity by four orders of magnitude and extend binding specificity to include formerly incompatible murine E-cadherin. By rationally adapting a single protein, we thus create a versatile murine model of human listeriosis.


PLOS ONE | 2009

Host Genetic Background Strongly Influences the Response to Influenza A Virus Infections

Barkha Srivastava; Paulina Blazejewska; Manuela Heßmann; Dunja Bruder; Robert Geffers; Susanne Mauel; Achim D. Gruber; Klaus Schughart

The genetic make-up of the host has a major influence on its response to combat pathogens. For influenza A virus, several single gene mutations have been described which contribute to survival, the immune response and clearance of the pathogen by the host organism. Here, we have studied the influence of the genetic background to influenza A H1N1 (PR8) and H7N7 (SC35M) viruses. The seven inbred laboratory strains of mice analyzed exhibited different weight loss kinetics and survival rates after infection with PR8. Two strains in particular, DBA/2J and A/J, showed very high susceptibility to viral infections compared to all other strains. The LD50 to the influenza virus PR8 in DBA/2J mice was more than 1000-fold lower than in C57BL/6J mice. High susceptibility in DBA/2J mice was also observed after infection with influenza strain SC35M. In addition, infected DBA/2J mice showed a higher viral load in their lungs, elevated expression of cytokines and chemokines, and a more severe and extended lung pathology compared to infected C57BL/6J mice. These findings indicate a major contribution of the genetic background of the host to influenza A virus infections. The overall response in highly susceptible DBA/2J mice resembled the pathology described for infections with the highly virulent influenza H1N1-1918 and newly emerged H5N1 viruses.


BMC Developmental Biology | 2004

Identification of cardiac malformations in mice lacking Ptdsr using a novel high-throughput magnetic resonance imaging technique

Jürgen E. Schneider; Jens Böse; Simon D. Bamforth; Achim D. Gruber; Carol Broadbent; Kieran Clarke; Stefan Neubauer; Andreas Lengeling; Shoumo Bhattacharya

BackgroundCongenital heart defects are the leading non-infectious cause of death in children. Genetic studies in the mouse have been crucial to uncover new genes and signaling pathways associated with heart development and congenital heart disease. The identification of murine models of congenital cardiac malformations in high-throughput mutagenesis screens and in gene-targeted models is hindered by the opacity of the mouse embryo.ResultsWe developed and optimized a novel method for high-throughput multi-embryo magnetic resonance imaging (MRI). Using this approach we identified cardiac malformations in phosphatidylserine receptor (Ptdsr) deficient embryos. These included ventricular septal defects, double-outlet right ventricle, and hypoplasia of the pulmonary artery and thymus. These results indicate that Ptdsr plays a key role in cardiac development.ConclusionsOur novel multi-embryo MRI technique enables high-throughput identification of murine models for human congenital cardiopulmonary malformations at high spatial resolution. The technique can be easily adapted for mouse mutagenesis screens and, thus provides an important new tool for identifying new mouse models for human congenital heart diseases.

Collaboration


Dive into the Achim D. Gruber's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lars Mundhenk

Free University of Berlin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Olivia Kershaw

Free University of Berlin

View shared research outputs
Top Co-Authors

Avatar

Philipp Olias

Free University of Berlin

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge