Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Achut G. Malur is active.

Publication


Featured researches published by Achut G. Malur.


Journal of Immunology | 2009

Deletion of PPARγ in Alveolar Macrophages Is Associated with a Th-1 Pulmonary Inflammatory Response

Anagha Malur; Aj Mccoy; Sergio Arce; Barbara P. Barna; Mani S. Kavuru; Achut G. Malur; Mary Jane Thomassen

Peroxisome proliferator-activated receptor γ (PPARγ) is constitutively expressed at high levels in healthy alveolar macrophages, in contrast to other tissue macrophages and blood monocytes. PPARγ ligands have been shown to down-regulate IFN-γ-stimulated inducible NO synthase (iNOS) in macrophages. Because NO is an important inflammatory mediator in the lung, we hypothesized that deletion of alveolar macrophage PPARγ in vivo would result in up-regulation of iNOS and other inflammatory mediators. The loss of PPARγ in macrophages was achieved by crossing floxed (+/+) PPARγ mice and a transgenic mouse containing the CRE recombinase gene under the control of the murine M lysozyme promoter (PPARγKO). Alveolar macrophages were harvested by bronchoalveolar lavage (BAL). Lymphocytes (CD8:CD4 ratio = 2.8) were increased in BAL of PPARγKO vs wild-type C57BL6; p ≤ 0.0001. Both iNOS and IFN-γ expression were significantly elevated (p ≤ 0.05) in BAL cells. Th-1 associated cytokines including IL-12 (p40), MIP-1α (CCL3), and IFN inducible protein-10 (IP-10, CXCL10) were also elevated. IL-4 and IL-17A were not detected. To test whether these alterations were due to the lack of PPARγ, PPARγ KO mice were intratracheally inoculated with a PPARγ lentivirus construct. PPARγ transduction resulted in significantly decreased iNOS and IFN-γ mRNA expression, as well as reduced BAL lymphocytes. These results suggest that lack of PPARγ in alveolar macrophages disrupts lung homeostasis and results in a Th1-like inflammatory response.


Journal of Lipid Research | 2007

ABCG1 is deficient in alveolar macrophages of GM-CSF knockout mice and patients with pulmonary alveolar proteinosis

Mary Jane Thomassen; Barbara P. Barna; Achut G. Malur; Tracey L. Bonfield; Carol Farver; Anagha Malur; Heidi Dalrymple; Mani S. Kavuru; Maria Febbraio

Patients with pulmonary alveolar proteinosis (PAP) display impaired surfactant clearance, foamy, lipid-filled alveolar macrophages, and increased cholesterol metabolites within the lung. Neutralizing autoantibodies to granulocyte-macrophage colony-stimulating factor (GM-CSF) are also present, resulting in virtual GM-CSF deficiency. We investigated ABCG1 and ABCA1 expression in alveolar macrophages of PAP patients and GM-CSF knockout (KO) mice, which exhibit PAP-like pulmonary pathology and increased pulmonary cholesterol. Alveolar macrophages from both sources displayed a striking similarity in transporter gene dysregulation, consisting of deficient ABCG1 accompanied by highly increased ABCA1. Peroxisome proliferator-activated receptor γ (PPARγ), a known regulator of both transporters, was deficient, as reported previously. In contrast, the liver X receptor α, which also upregulates both transporters, was highly increased. GM-CSF treatment increased ABCG1 expression in macrophages in vitro and in PAP patients in vivo. Overexpression of PPARγ by lentivirus-PPARγ transduction of primary alveolar macrophages, or activation by rosiglitazone, also increased ABCG1 expression. These results suggest that ABCG1 deficiency in PAP and GM-CSF KO alveolar macrophages is attributable to the absence of a GM-CSF-mediated PPARγ pathway. These findings document the existence of ABCG1 deficiency in human lung disease and highlight a critical role for ABCG1 in surfactant homeostasis.


Journal of Lipid Research | 2010

Targeted PPARγ deficiency in alveolar macrophages disrupts surfactant catabolism

Anna D. Baker; Anagha Malur; Barbara P. Barna; Shobha Ghosh; Mani S. Kavuru; Achut G. Malur; Mary Jane Thomassen

Surfactant accumulates in alveolar macrophages of granulocyte-macrophage colony-stimulating factor (GM-CSF) knockout (KO) mice and pulmonary alveolar proteinosis (PAP) patients with a functional loss of GM-CSF resulting from neutralizing anti–GM-CSF antibody. Alveolar macrophages from PAP patients and GM-CSF KO mice are deficient in peroxisome proliferator-activated receptor-γ (PPARγ) and ATP-binding cassette (ABC) lipid transporter ABCG1. Previous studies have demonstrated that GM-CSF induces PPARγ. We therefore hypothesized that PPARγ promotes surfactant catabolism through regulation of ABCG1. To address this hypothesis, macrophage-specific PPARγ (MacPPARγ) knockout mice were utilized. MacPPARγ KO mice develop foamy, lipid-engorged Oil Red O positive alveolar macrophages. Lipid analyses revealed significant increases in the cholesterol and phospholipid contents of MacPPARγ KO alveolar macrophages and extracellular bronchoalveolar lavage (BAL)–derived fluids. MacPPARγ KO alveolar macrophages showed decreased expression of ABCG1 and a deficiency in ABCG1-mediated cholesterol efflux to HDL. Lipid metabolism may also be regulated by liver X receptor (LXR)–ABCA1 pathways. Interestingly, ABCA1 and LXRβ expression were elevated, indicating that this pathway is not sufficient to prevent surfactant accumulation in alveolar macrophages. These results suggest that PPARγ mediates a critical role in surfactant homeostasis through the regulation of ABCG1.


American Journal of Physiology-lung Cellular and Molecular Physiology | 2011

Restoration of PPARγ reverses lipid accumulation in alveolar macrophages of GM-CSF knockout mice

Anagha Malur; Anna D. Baker; Aj Mccoy; Greg Wells; Barbara P. Barna; Mani S. Kavuru; Achut G. Malur; Mary Jane Thomassen

Pulmonary alveolar proteinosis (PAP) is a lung disease characterized by a deficiency of functional granulocyte macrophage colony-stimulating factor (GM-CSF) resulting in surfactant accumulation and lipid-engorged alveolar macrophages. GM-CSF is a positive regulator of PPARγ that is constitutively expressed in healthy alveolar macrophages. We previously reported decreased PPARγ and ATP-binding cassette transporter G1 (ABCG1) levels in alveolar macrophages from PAP patients and GM-CSF knockout (KO) mice, suggesting PPARγ and ABCG1 involvement in surfactant catabolism. Because ABCG1 represents a PPARγ target, we hypothesized that PPARγ restoration would increase ABCG1 and reduce macrophage lipid accumulation. Upregulation of PPARγ was achieved using a lentivirus expression system in vivo. GM-CSF KO mice received intratracheal instillation of lentivirus (lenti)-PPARγ or control lenti-eGFP. Ten days postinstillation, 79% of harvested alveolar macrophages expressed eGFP, demonstrating transduction. Alveolar macrophages showed increased PPARγ and ABCG1 expression after lenti-PPARγ instillation, whereas PPARγ and ABCG1 levels remained unchanged in lenti-eGFP controls. Alveolar macrophages from lenti-PPARγ-treated mice also exhibited reduced intracellular phospholipids and increased cholesterol efflux to HDL, an ABCG1-mediated pathway. In vivo instillation of lenti-PPARγ results in: 1) upregulating ABCG1 and PPARγ expression of GM-CSF KO alveolar macrophages, 2) reducing intracellular lipid accumulation, and 3) increasing cholesterol efflux activity.


Biochemical and Biophysical Research Communications | 2010

PPARγ regulates the expression of cholesterol metabolism genes in alveolar macrophages

Anna D. Baker; Anagha Malur; Barbara P. Barna; Mani S. Kavuru; Achut G. Malur; Mary Jane Thomassen

Peroxisome proliferator-activated receptor-gamma (PPARgamma) is a nuclear transcription factor involved in lipid metabolism that is constitutively expressed in the alveolar macrophages of healthy individuals. PPARgamma has recently been implicated in the catabolism of surfactant by alveolar macrophages, specifically the cholesterol component of surfactant while the mechanism remains unclear. Studies from other tissue macrophages have shown that PPARgamma regulates cholesterol influx, efflux, and metabolism. PPARgamma promotes cholesterol efflux through the liver X receptor-alpha (LXRalpha) and ATP-binding cassette G1 (ABCG1). We have recently shown that macrophage-specific PPARgamma knockout (PPARgamma KO) mice accumulate cholesterol-laden alveolar macrophages that exhibit decreased expression of LXRalpha and ABCG1 and reduced cholesterol efflux. We hypothesized that in addition to the dysregulation of these cholesterol efflux genes, the expression of genes involved in cholesterol synthesis and influx was also dysregulated and that replacement of PPARgamma would restore regulation of these genes. To investigate this hypothesis, we have utilized a Lentivirus expression system (Lenti-PPARgamma) to restore PPARgamma expression in the alveolar macrophages of PPARgamma KO mice. Our results show that the alveolar macrophages of PPARgamma KO mice have decreased expression of key cholesterol synthesis genes and increased expression of cholesterol receptors CD36 and scavenger receptor A-I (SRA-I). The replacement of PPARgamma (1) induced transcription of LXRalpha and ABCG1; (2) corrected suppressed expression of cholesterol synthesis genes; and (3) enhanced the expression of scavenger receptors CD36. These results suggest that PPARgamma regulates cholesterol metabolism in alveolar macrophages.


Biochemical and Biophysical Research Communications | 2011

Lentivirus-ABCG1 instillation reduces lipid accumulation and improves lung compliance in GM-CSF knock-out mice.

Anagha Malur; Isham Huizar; Greg Wells; Barbara P. Barna; Achut G. Malur; Mary Jane Thomassen

We have shown decreased expression of the nuclear transcription factor, peroxisome proliferator-activated receptor-gamma (PPARγ) and the PPARγ-regulated ATP-binding cassette transporter G1 (ABCG1) in alveolar macrophages from patients with pulmonary alveolar proteinosis (PAP). PAP patients also exhibit neutralizing antibodies to granulocyte-macrophage colony stimulating factor (GM-CSF), an upregulator of PPARγ. In association with functional GM-CSF deficiency, PAP lung is characterized by surfactant-filled alveolar spaces and lipid-filled alveolar macrophages. Similar pathology characterizes GM-CSF knock-out (KO) mice. We reported previously that intratracheal instillation of a lentivirus (lenti)-PPARγ plasmid into GM-CSF KO animals elevated ABCG1 and reduced alveolar macrophage lipid accumulation. Here, we hypothesized that instillation of lenti-ABCG1 might be sufficient to decrease lipid accumulation and improve pulmonary function in GM-CSF KO mice. Animals received intratracheal instillation of lenti-ABCG1 or control lenti-enhanced Green Fluorescent Protein (eGFP) plasmids and alveolar macrophages were harvested 10 days later. Alveolar macrophage transduction efficiency was 79% as shown by lenti-eGFP fluorescence. Quantitative PCR analyses indicated a threefold (p=0.0005) increase in ABCG1 expression with no change of PPARγ or ABCA1 in alveolar macrophages of lenti-ABCG1 treated mice. ABCG1 was unchanged in control lenti-eGFP and PBS-instilled groups. Oil Red O staining detected reduced intracellular neutral lipid in alveolar macrophages from lenti-ABCG1 treated mice. Extracellular cholesterol and phospholipids were also decreased as shown by analysis of bronchoalveolar lavage fluid. Lung compliance was diminished in untreated GMCSF KO mice but improved significantly after lenti-ABCG1 treatment. Data demonstrate that in vivo instillation of lenti-ABCG1 in GM-CSF KO mice is sufficient to restore pulmonary homeostasis by: (1) upregulating ABCG1; (2) reducing intra and extracellular lipids; and (3) improving lung function. Results suggest that the ABCG1 lipid transporter is the key downstream target of GM-CSF-induced PPARγ necessary for surfactant catabolism.


BMC Immunology | 2013

Alveolar macrophages of GM-CSF knockout mice exhibit mixed M1 and M2 phenotypes

Heidi Dalrymple; Barbara P. Barna; Anagha Malur; Achut G. Malur; Mani S. Kavuru; Mary Jane Thomassen

BackgroundActivin A is a pleiotrophic regulatory cytokine, the ablation of which is neonatal lethal. Healthy human alveolar macrophages (AMs) constitutively express activin A, but AMs of patients with pulmonary alveolar proteinosis (PAP) are deficient in activin A. PAP is an autoimmune lung disease characterized by neutralizing autoantibodies to Granulocyte-Macrophage Colony Stimulating Factor (GM-CSF). Activin A can be stimulated, however, by GM-CSF treatment of AMs in vitro. To further explore pulmonary activin A regulation, we examined AMs in bronchoalveolar lavage (BAL) from wild-type C57BL/6 compared to GM-CSF knockout mice which exhibit a PAP-like histopathology. Both human PAP and mouse GM-CSF knockout AMs are deficient in the transcription factor, peroxisome proliferator activated receptor gamma (PPARγ).ResultsIn sharp contrast to human PAP, activin A mRNA was elevated in mouse GM-CSF knockout AMs, and activin A protein was increased in BAL fluid. Investigation of potential causative factors for activin A upregulation revealed intrinsic overexpression of IFNγ, a potent inducer of the M1 macrophage phenotype, in GM-CSF knockout BAL cells. IFNγ mRNA was not elevated in PAP BAL cells. In vitro studies confirmed that IFNγ stimulated activin A in wild-type AMs while antibody to IFNγ reduced activin A in GM-CSF knockout AMs. Both IFNγ and Activin A were also reduced in GM-CSF knockout mice in vivo after intratracheal instillation of lentivirus-PPARγ compared to control lentivirus vector. Examination of other M1 markers in GM-CSF knockout mice indicated intrinsic elevation of the IFNγ-regulated gene, inducible Nitrogen Oxide Synthetase (iNOS), CCL5, and interleukin (IL)-6 compared to wild-type. The M2 markers, IL-10 and CCL2 were also intrinsically elevated.ConclusionsData point to IFNγ as the primary upregulator of activin A in GM-CSF knockout mice which in addition, exhibit a unique mix of M1-M2 macrophage phenotypes.


Virus Research | 2012

Mutations within the human parainfluenza virus type 3 (HPIV 3) C protein affect viral replication and host interferon induction

Greg Wells; Matthew Addington-Hall; Achut G. Malur

Human parainfluenza virus type 3 (HPIV 3) encodes a multifunctional C protein that is capable of inhibiting viral replication and counteracting the host interferon (IFN) signaling pathway. We recently demonstrated that the C protein is phosphorylated both in vitro and in vivo and mutations within the phosphorylation sites exhibit differential inhibitory activities in vitro. In this study, we report for the first time the successful recovery of mutant HPIV 3 viruses containing mutations within the C protein. Three mutant viruses, Cm-1, Cm-3 and Cm-4, harboring individual mutations of S7, S47T48 and S81 residues, respectively, were examined for their replication profiles and their ability to abrogate host IFN induction. Viral transcription was similar for all viruses; however Cm-3 displayed a relatively higher replication. Infection of cells with Cm-1 and Cm-3 led to the activation of IFN regulatory transcription factor 3 (IRF-3) and subsequent increase in IFN-β mRNA levels as determined by immunofluorescence assay and RT-PCR analyses, respectively. Moreover, Cm-3 was able to partially resist the interferon induced antiviral state in Vero cells. Taken together, these results suggest that mutations within the C protein differentially affect viral replication and host interferon induction.


Virus Research | 2009

Evidence for phosphorylation of human parainfluenza virus type 3 C protein: mutant C proteins exhibit variable inhibitory activities in vitro

Achut G. Malur; Greg Wells; Aj Mccoy; Amiya K. Banerjee

The P mRNA of human parainfluenza virus type 3, like other members of the subfamily Paramyxovirinae, gives rise to several polypeptides, one amongst them, the C protein, which is involved in inhibition of viral RNA synthesis as well as counteracting the host interferon signaling pathway. As a further step towards characterizing the function of C protein we present evidence to demonstrate the phosphorylation of C protein. Evidence for this observation emerged from deletion mapping studies coupled with mass spectroscopy analysis confirming residues S7, S22, S47T48 and S81 residues as the phosphorylation sites within the NH(2)-terminus of C protein. Here, we utilized a HPIV 3 minigenome replication assay and real time RT-PCR analysis to measure the relative RNA levels synthesized in the presence of mutant C proteins. Mutants S7A and S81A displayed low levels of RNA while mutant 5A that was devoid of all these phosphorylation sites exhibited high RNA level in comparison to wild type C during transcription. Interestingly, high levels of RNA were observed in the presence of S81A and mutant 5A during replication. Taken together, our results indicate that phosphorylation may differentially affect the inhibitory activity of C protein thereby regulating viral RNA synthesis.


Virus Genes | 2008

Expression of human parainfluenza virus type 3 PD protein and intracellular localization in virus infected cells

Greg Wells; Achut G. Malur

Collaboration


Dive into the Achut G. Malur's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anagha Malur

East Carolina University

View shared research outputs
Top Co-Authors

Avatar

Mani S. Kavuru

East Carolina University

View shared research outputs
Top Co-Authors

Avatar

Aj Mccoy

East Carolina University

View shared research outputs
Top Co-Authors

Avatar

Greg Wells

East Carolina University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anna D. Baker

East Carolina University

View shared research outputs
Top Co-Authors

Avatar

Irene Marshall

East Carolina University

View shared research outputs
Researchain Logo
Decentralizing Knowledge